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Abstract _ q _ 7

The objective of this study is to determine the performance, or a bound on the per-
formance, of the "best possible" method for digital communication over fixed time-
continuous channels with memory, i.e., channels with intersymbol interference and/or
colored noise. The channel model assumed is a linear, time-invariant filter followed by
additive, colored Gaussian noise. A general problem formulation is introduced which
involves use of this channel once for T seconds to communicate one of M signals. Two
questions are considered: (1) given a set of signals, what is the probability of error?
and (2) how should these signals be selected to minimize the probability of error? It is
shown that answers to these questions are possible when a suitable vector space repre-
sentation is used, and the basis functions required for this-representation are presented.
Using this representation and the random coding technique, a bound on the probability of
error for a random ensemble of signals is determined and the structure of the ensemble
of signals yielding a minimum error bound is derived. The inter-relation of coding and
modulation in this analysis is discussed and it is concluded that: (1) the optimum
ensemble of signals involves an impractical mddulation technique, and (2)the error
bound for the optimum ensemble of signals provides a "best possible" result against
which more practical modulation techniques may be compared. Subsequently, several
suboptimum modulation techniques are considered, and one is selected as practical for
telephone channels. A theoretical analysis indicates that this modulation system should
achieve a data rate of about 13,000 bits/second on a data grade telephone line with an

error probability of approximately 10 -5. An experimental program substantiates that
this potential improvement could be realized in practice. _/1 _4_.
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DIGITAL COMMUNICATION

OVER FIXED TIME-CONTINUOUS CHANNELS WITH MEMORY-

WITH SPECIAL APPLICATION TO TELEPHONE CHANNELS

CHAPTER I

DIGITAL COMMUNICATION OVER TELEPHONE LINES

A. HISTORY

An interest in low-speed digital communication over telephone circuits has existed for many

years. As early as 1919, the transmission of teletype and telegraph data had been attempted

over both long-distance land lines t and transoceanic cables. 2 During these experiments it was

recognized that data rates would be severely limited by signal distortion arising from nonlinear

phase characteristics of the telephone line. This effect, although present in voice communica-

tion, had not been previously noticed due to the insensitivity of the human ear to phase distor-

tion. Recognition of this problem led to fundamental studies by Carson, 3'4 Nyquist, 5'6 and

others.7 From these studies came techniques, presented around t930, for quantitatively meas-

uring phase distortion 8 and for equalizing lines with such distortion.9 This work apparently

resolved the existing problems, and littleor no additional work appears to have been done un-

til the early 1950's.

B. CURRENT INTEREST

The advent of the digital computer in the early 1950's and the resulting military and com-

mercial interest in large-scale information processing systems led to a new interest in using

telephone lines for transmitting digital information. This time, however, the high operating

speeds of these systems, coupled with the possibility of a widespread use of telephone lines,

made it desirable to attempt a more efficient utilization of the telephone channel. Starting about

1954, people at both Lincoln Laboratory 10'll and Bell Telephone Laboratories 12-14 began in-

vestigating this problem. These and other studies were continued by a moderate but ever in-

creasing number of people during the late 1950's. 15-21 By t960, numerous systems for obtain-

ing high data rates (over 500 bits/second) had been proposed, built, and tested.22-30 These

systems were, however, stillquite poor in comparison to what many people felt to be possible.

Because of this, and due also to a growing interest in the application of coding techniques to

this problem, work has continued at a rapidly increasing pace up to the present. 3t-43 Today

it is necessary only to read magazines such as Fortune, Business Week, or U. S. News and

World Report to observe the widespread interest in this use of the telephone network. 44-47

C. REVIEW OF CURRENT TECHNOLOGY

The following paragraphs discuss some of the current data transmission systems, or

modems (modulator-demodulator), and indicate the basic techniques used along with the resulting

performance. Such state-of-the-art information is useful in evaluating the theoretical results

obtained in the subsequent analysis.



Two numbers often used in comparing digital communication systems are rate R in bits

per second and the probability of error Pe" However, the peculiar properties of telephone

channels (Sec. I-D) cause the situation to be quite different here. In fact, most present modems

-4
operating on atelephone line whose phase distortion is within "specified limits" have a P of t0

-6 e
to 10 that is essentially independent of rate as long as the rate is below some maximum value.

As a result, numbers useful for comparison purposes are the maximum rate and the "specified

limit" on phase distortion; the latter number is usually defined as the maximum allowable dif-

ferential delay _ over the telephone line passband.

Probably the best-known current modems are those used by the Bell Telephone System in

: 33
the Data-Phone servlce. At present, at least two basic systems cover the range from 500 to

approximately 2400 bits/second. The simplest of these modems is an FSK system operating at

600 or 1200 bits/second. Alexander, Gryb, and Nast 33 have found that the 600-bits/second

system will operate without phase compensation over essentially any telephone circuit in the

country and that the 1200-bits/second system will operate over most circuits with a "universal"

phase compensator. A second system used by Bell for rates of about 2400 bits/second is a

single frequency four-phase differentially modulated system. 48 At present, little additional

information is available concerning the sensitivity of this system to phase distortion.

Another system operating at rates of 2400 to 4800 bits/second has been developed by Rixon

Electronics, Inc.24'29 This modem uses binary AM with vestigial side-band transmission and

requires telephone lines having maximum differential delays of 200 to 400 _sec.

A third system, the Collins Radio Company Kineplex, Z7'49 has been designed to obtain data

rates of 4000 to 5000 bits/second. This modem was one of the first to use signal design tech-

niques in an attempt to overcome some of the special problems encountered on the telephone

channel. Basically, this system uses four-phase differential modulation of several sinusoidal

carriers spaced in frequency throughout the telephone line passband. The differential delay

requirements for this system are essentially the same as for the Rixon system at high rate,

i.e., about 200_sec.

Probably the most sophisticated of the modems constructed to date was used at Lincoln

Laboratory in a recently reported experiment. 43 In this system, the transmitted signal was

"matched" to the telephone line so that the effect of phase distortion was essentially eliminated. $

Use of this modem with the SECO 50 machine (a sequential coder-decoder) and a feedback channel

allowed virtually error-free transmission at an average rate of 7500 bits/second.

D. CHARACTERISTICS OF TELEPHONE LINE AS CHANNEL

FOR DIGITAL COMMUNICATION

Since telephone lines have been designed primarily for voice communication, and since the

properties required for voice transmission differ greatly from those required for digital trans-

mission, numerous studies have been made to evaluate the properties that are most significant

for this application (see Refs. t0, tZ, t4, t7,3t, 33). One of the first properties to be recognized

was the wide variation of detailed characteristics of different lines. However, later studies

1 Absolute time delay is defined to be the derivative, with respect to radian frequency, of the telephone line

phase characteristic. Differential delay is defined in terms of this by subtracting out any constant delay. The

differential delay for a "typical" telephone line might be 4 to 6 msec at the band edges.

$ This same approach appears to have been developed independently at IBM. 42



have shown 33 that only a few phenomena are responsible for the characteristics that affect digital

communication most significantly. In an order more or less indicative of their relative impor-

tance, these are as follows.

Intersymbol Interference?:- Intersymbol interference is a term commonly applied to an

undesired overlap (in time) of received signals that were transmitted as separate pulses. This

effeet is caused by both the finite bandwidth and the nonlinear phase characteristic of the tele-

phone line, and leads to significant errors even in the absence of noise or to a significant reduc-

tion in the signaling rate.$ It is possible to show, however, that the nonlinear phase character-

istie is the primary source of intersymbol interference.

The severity of the intersymbol interference problem can be appreciated from the fact that

the maximum rate of current modems is essentially determined by two factors: (I) the sensi-

tivity of the particular signaling scheme to intersymbol interference, and (2) the "specified

limit" on phase distortion; the latter being in some sense a specification of allowable inter-

symbol interference. In none of these systems does noise play a significant role in determining

rate as it does, for example, in the classical additive, white Gaussian noise channel. 51 Thus,

current modems trade rate for sensitivity to phase distortion - a higher rate requiring a lower

"specified limit" on phase distortion and vice versa.

Impulse and Low-Level Noise:-- Experience has shown that the noise at the output of a tele-

phone line appears to be the sum of two basic types. 31'33 One type of noise, low-level noise, is

typically 20 to 50 db below normal signal levels and has the appearance of Gaussian noise super-

imposed on harmonics of 60cps. The level and character of this noise is such that it has neg-

ligible effect on the performance of current modems. The second type of noise, impulse noise,

differs from low-level noise in several basic attributes. 52 First, its appearance when viewed

on an oscilloscope is that of rather widely separated (on the order of seconds, minutes, or

even days) bursts of relatively long (on the order of 5 to 50 msec) transient pulses. Second, the

level of impulse noise may be as much as 10 db above normal signal levels. Third, impulse

noise appears difficult to characterize in a statistical manner suitable for deriving optimum

detectors. Because of these characteristics, present modems make little or no attempt to

combat impulse noise; furthermore, impulse noise is the major source of errors in these sys-

tems. In fact, most systems operating at a rate such that intersymbol interference is a neg-

ligible factor in determining probability of error will be found to have an error rate almost

entirely dependent upon impulse noise - typical error rates being i in 104 to I in 106 (Ref. 33).

Phase Crawl:-- Phase crawl is a term applying to the situation in which the received signal

spectrum is displaced in frequency from the transmitted spectrum. Typical displacements are

from 0 to I0 cps and arise from the use of nonsynchronous oscillators in frequency translations

performed by the telephone company. Current systems overcome this effect by various modu-

lation techniques such as AM vestigial sideband, differentially modulated FM, and carrier re-

covery with re-insertion.

Dropout:-- The phenomena called dropout occurs when for some reason the telephone line ap-

pears as a noisy open circuit. Dropouts are usually thought to last for only a small fraction of a

"J"Implicit in the following discussion of intersymbol interference is the assumption that the telephone line ;s a

linear device. Although this may not be strictly true, it appears to be a valid approximation in most situations.

:_ Alternately, and equivalently, intersymbol interference can be viewed in the time domaln as arising from the

long impulse response of the line (typically 10 to 15 msec duration).



second, although an accidental opening of the line can clearly lead to a much longer dropout.

Little can be done to combat this effect except for the use of coding techniques.

Crosstalk:- Crosstalk arises from electromagnetic coupling between two or more lines in

the same cable. Currently, this is a secondary problem relative to intersymbol interference

and impulse noise.

The previous discussion has indicated the characteristics of telephone lines that affect digital

communication most significantly. It must be emphasized, however, that present modems are

limited in performance almost entirely by intersymbol interference and impulse noise. The

maximum rate is determined primarily by intersymbol interference and the probability of error

is determined primarily by impulse noise. Thus, an improved signaling scheme that consider-

ably reduces intersymbol interference should allow a significant increase in data rate with a

negligible increase in probability of error. Some justification for believing that this improve-

ment is possible in practice is given by the experiment at Lincoln Laboratory. 43 In this experi-

ment, a combination of coding and a signal design that reduced intersymbol interference allowed

performance significantly greater than any achieved previously. Even so, the procedure for

combating intersymbol interference was ad hoc. Thus, the primary objective of this report is

to obtain a fundamental theoretical understanding of optimum signaling techniques for channels

whose characteristics are similar to those of the telephone line.

E. MATHEMATICAL MODEL FOR DIGITAL COMMUNICATION OVER FIXED TIME-

CONTINUOUS CHANNELS WITH MEMORY

1. Introduction

Basic to a meaningful theoretical study of a real life problem is a model that includes the

important features of the real problem and yet is mathematically tractable. This section pre-

sents a relatively simple, but heretofore incompletely analyzed, model that forms the basis for

the subsequent theoretical work. There are two fundamental reasons for this choice of model:

(a) It represents a generalization of the classical white, Gaussian

noise channel considered by Fano, 51 Shannon, 53 and others. Thus,

any analysis of this channel represents a generalization of pre-

vious work and is of interest independently of any telephone line

considerations.

(b) As indicated previously, the performance of present telephone

line communication systems is limited in rate by intersymbol

interference and in probability of error by impulse noise; the

low-level "Gaussian" noise has virtually no effect on system

performance. However, the frequent occurrence of long inter-

vals without significant impulse noise activity makes it desirable

to study a channel which involves only intersymbol interference

(it is time dispersive) and Gaussian noise. In this manner, it

will be possible to learn how to reduce intersymbol interference
and thus increase rate to the point where errors caused by low-

level noise are approximately equal in number to errors caused

by impulse noise.

2. Some Considerations in Choosing a Model

One of the fundamental aims of the present theoretical work is to determine the performance,

or a bound on the performance, of the "best possible" method for digital communication over

fixed time-continuous channels with memory, i.e., channels with intersymbol interference



and/orcolorednoise. In keepingwiththis goal,it is desirableto includein themodelonly
thosefeaturesthatare fundamentalto theproblemwhenall practicalconsiderationsareremoved.
For example,practicalconstraintsoftenrequirethatdigital communicationbeaccomplishedby
theserial transmissionof short, relativelysimplepulseshavingonlytwopossibleamplitudes.
Thetheoreticalanalysiswill show,however,thatfor manychannelsthis leadsto anextremely
inefficientuseof theavailablechannelcapacity. In othersituations,whencommunicationover
a narrow-band,bandpasschannelis desired,it is oftenconvenientto derivethetransmitted
signalbyusingabasebandsignalto amplitude,phaseor frequencymodulatea sinusoidalcarrier.
However,ona wide-band,bandpasschannelsuchasthetelephoneline it is notapriori clear
thatthis approachis still usefulor appropriatealthoughit is certainlystill possible. Finally,
it shouldbe recognizedthattheinterestin amodelfor digitalt communicationimpliesthatde-
tectionanddecisiontheoryconceptsareappropriateasopposedto least-mean-squareerror
filtering conceptsthatfindapplicationin analogcommunication.

3. Model

Anappropriatemodelfor digitalcommunicationoverfixedtime-dispersivechannelscan
bespecifiedin thefollowingmanner. Anobviousbut fundamentalfact is thatin anyreal situa-
tion it is necessaryto transmitinformationfor onlyafinite time, say T seconds.This, cou-
pledwith thefact thata modelfor digital communicationis desired,impliesthatoneof onlya
finite number,sayM, of possiblemessagesis tobe transmitted.$For thephysicalsituation
beingconsidered,it is usefulto thinkof transmittingthis messagebyestablishingaone-to-one
correspondencebetweena setof M signalsof T secondsdurationandtransmittingthesignal
thatcorrespondsto thedesiredmessage.Furthermore,in anyphysicalsituation,thereis only
afinite amountof energy,sayST,availablewithwhichto transmitthesignal. (Implicit here
is the interpretationof S asaveragesignalpower.) Thisfact leadsto theassumptionof some
form of anenergyconstraintonthesetof signals- a particularlyconvenientconstraintbeing
thatthestatistical averageof thesignalenergiesis nogreaterthanST. Thus,if thesignals
aredenotedby st(t)andeachsignalis transmittedwithprobabilityPi' theconstraintis

M

;o•2 Pi si2(t) dt _< ST (i)

i=t

Next, the time-dispersive nature of the channel must be included in the model. A model

for this effect is simply a linear time-invariant filter. The only assumption required on this

filter is that its impulse response have finite energy, i.e., that

o dt < _o (2)
h2(t)

oo

t The word "digital" is used here and throughout this work to mean that there are only a finite number of possible

messages in o finite time interval. It should not be construed to mean "the transmission of binary symbols" or

anything equally restrictive.

At this point, no practical restrlctions will be placed on T or M. So, for example, perfectly allowable values

for T and M might be T=3X10 7 seconds_l year andM=1011 . This is done to allow for a very general for-

mulation of the problem. Later analysis will consider more practical situations.



It is convenient, however, to assume, as is done through this work, that the filter is normalized

so that max IH(f)l = l, where
f

SH{f) = h(t) e -jc°t dt

Furthermore, to make the entire problem nontrivial, some noise must be considered. Since the

assumption of Gaussian noise leads to mathematically tractable results and since a portion of the

noise on telephone lines appears to be "approximately" Gaussian, this form for the noise is as-

sumed in the model. Moreover, since actual noise appears to be additive, that is also assumed.

For purposes of generality, however, the noise will be assumed to have an arbitrary spectral

density N(f).

l_'inally, to enable the receiver to determine the transmitted message it is necessary to

observe the received signal (the filtered transmitted signal corrupted by the additive noise) over

an interval of, say T t seconds, and to make a decision based upon this observationS-

In summary, the model to be analyzed is the following: given a set of M signals of T seconds

duration satisfying the energy constraint of Eq.(l), a message is to be transmitted by selecting

one of the signals and transmitting it through the linear filter h(t). The filter output is assumed

to be corrupted by (possibly colored) Gaussian noise and the receiver is to decide which message

was transmitted by observing the corrupted signal for T 1 seconds.

Given the above model, a meaningful performance criterion is probability of error. On the

basis of this criterion, three fundamental questions can be posed.

Given a set of signals {si(t)}, what form of decision device should
be used?

What is the resulting probability of error?

ttow should a set of signals be selected to minimize the probability
of error?

The answer to the first question involves well-known techniques 54 and will be discussed only

briefly in Chapter Ill. The determination of the answers to the remaining two questions is the

primary concern of the theoretical portion of this report.

In conclusion, it must be emphasized that the problem formulated in this section is quite

general. Thus, it allows for the possibility that optimum signals may be of the form of those

used in current modems. The formulation has not, however, included any practical constraints

on signaling schemes and thus does not preclude the possibility that an alternate and superior

technique may be found.

t At this point, T1 is completely arbitrary. Later it will prove convenient to assume T1 >/T which is the situation
of most practical interest.



CHAPTER II

SIGNAL REPRESENTATION PROBLEM

A. INTRODUCTION

The previous section presented a model for digital communication over fixed time-dispersive

channels and posed three fundamental questions concerning this model However, an attempt

to obtain detailed answers to these questions involves considerable difficulty. The source of this

difficulty is that the energy constraint is applied to signals at the filter input, whereas the prob-

ability of error is determined by the structure of these signals at the filter output. Fortunately,

the choice of a signal representation that is "matched" to both the model and the desired analysis

allows the presence of the filter to be handled in a straightforward manner. The following sec-

tions present a brief discussion of the general signal representation problem, slanted, of course,

toward the present analysis, and provide the necessary background for subsequent work.

B. SIGNAL REPRESENTATION

At the outset, it should be mentioned that many of the concepts, techniques, and terminology

of this section are well known to mathematicians under the title of "Linear Algebra." 55

As pointed out by Siebert, 56 the fundamental goal in choosing a signal representation for a

given problem is the simplification of the resulting analysis. Thus, for a digital communication

problem, the signal representation is chosen primarily to simplify the evaluation of probability

of error. One representation which has been found to be extremely useful in such problems

(due largely to the widespread assumption of Gaussian noise) pictures signals as points in an

n-dimensional Euclidean vector space.

1. Vector Space Concept

In a digital communication problem it is necessary to represent a finite number of signals

M. One way to accomplish this is to write each signal as a linear combination of a (possibly

infinite) set of orthonormal "basis" functions {_i(t)}, i.e.,

n

sj(t) = _, sij_i(t ) (3)

i=l

where

sj : _ (Pi(t) sj(t) dt

When this is done, it is found in many eases that the resulting probability of error analysis

depends only on the numbers sij and is independent of the basis functions {(Pi(t)}. In such cases,

a vector or n-tuple s. can be defined as
-j

sj = (slj, szj ..... Skj ..... Snj)

which, in so far as the analysis is concerned, represents the time function sj(t). Thus, it is

possible to view s. as a straightforward generalization of a three-dimensional vector and sj(t)-j

as a vector in an n-dimensional vector space. The utility of this viewpoint is clear from its



widespread use in the literature. Two basic reasons for this usefulness, at least in problems

with Gaussian noise, are elear from the following relations which are readily derived from

Eq.(3). The energy of a signal sj(t) is given by

n

s2(t) dt = 2 siZj= s.. s.
3 -J -3

i=l

and the cross correlation between two signals si(t) and sj(t) is given by

n

_ sj(t) sk(t) dt = ?_ sijsik = sj - S_k

i= i

where ( ) • ( ) denotes the standard inner product. 55

2. Choice of Basis Functions

So far, the discussion of the vector space representation has been concerned with basic re-
57

sults from the theory of orthonormal expansions. However, an attempt to answer a related

question - how are the _i(t) to be chosen - leads to results that are far less well defined and less

well known. Fundamentally, this difference arises because the choice of the el(t) depends heavily

upon the type of analysis to be performed, i.e., the el(t) should be chosen to "simplify the anal-

ysis as much as possible." Since such a criterion clearly leads to no specific rule for deter-

mining the el(t), it is possible only to indicate situations in which distinctly different basis func-

tions might be appropriate.

Band-Limited Signals:- A set of basis functions used widely for representing band-

limited signals is the set of _Pi(t) defined by

_Pi(t) = _ sin2_W [t -- (i/2W)] (4)
2_W [t -- (i/2W)l

where W is the signal bandwidth. The popularity of this representation, the so-called sampling

representation, lies almost entirely in the simple form for the coefficient s... This is readily
13

shown to be

_oosij = _Pi(t) sj(t) dt t sj(i/ZW) (5)
-oo _4U_

It should be recalled, however, that no physical signal can be precisely band-limited. 58 Thus,

any attempt to represent a physical signal by this set of basis functions must give only an ap-

proximate representation. However, it is possible to make the approximation arbitrarily aceu-

rate by choosing W sufficiently large.

Time-Limited Signals:- Time-limited signals are often represented by any one of

several forms of a Fourier series. These representations are well known to engineers and any

discussion herewould be superfluous. It is worth noting that this representation, in contrast

to the sampling representation, is exact for any signal of engineering interest.

Arbitrary Set of M Signals:- The previously described representations share the

property that, in general, an infinite number of basis functions are required to represent a

finite number of signals, ttowever, in problems involving only a finite number of signals, it



S

is sometimes convenient to choose a different set of basis functions so that no more than M basis

functions are required to represent M signals. A proof that such a set exists, along with the

procedure for finding the functions, has been presented by Arthurs and Dym. 59 This result, al-

though well known to mathematicians, appears to have just recently been recognized by electrical

engineers.

Signals Corrupted by Additive Colored Gaussian Noise:- In problems involving signals

of T seconds duration imbedded in colored Gaussian noise, it is often desirable to represent both

signals and noise by a set of basis functions such that the noise coefficients are statistically

independent random variables. If the noise autocorrelation function _ is R(T), it is well known

from the Karhunen-Loeve theorem 54'60 that the ¢_i(t) satisfying the integral equation

So•Xiq)i(T) = _i(W) R(T -- T') dr 0,.< T,.< T

form such a set of basis functions.

Filtered Signals:- Consider the following somewhat artificial situation closely related

to the results of Sec. II-D. A set of M finite energy signals defined on the interval [0, T] is

given. Also given is a nonrealizable linear filter whose impulse response satisfies h(t) = h(-t).

It is desired to represent both the given signals and the signals that are obtained when these are

passed through the filter by orthonormal expansions defined on the interval [0, T]. In general,

arbitrary and different sets of (Pi(t) can be chosen for both representations. Then the relation

between the input signal vector -Js' and the output signal vector, say rj, is determined as follows:

Let rj(t) be the filter output when sj(t) is the filter input. Then

rj(t) ZX sj(r) h(t - r) dr = _, sij ai(r) h(t - r) dr

i

where {ai(t)} are the basis functions for the input signals. Thus, if {Ti(t) } are the basis functions

for the output signals, it follows that

rk j =A rj(t) 7k(t) dt= 2 sij 7k(t) h(t- _') _i(_-) drdt

i

or, in vector notation,

r. = [H] s.
-j -j

where the k, i th element in [H] is

(6)

T_ T 7k(t) h(t - 7) c_i(r) dr dt

and, in general, _r i and s i are infinite dimensional column vectors and [HI is an infinite dimen-

sional matrix.

t For the statement made here to be strictly true, it is sufficient that R(-r) be the autocorrelation function of
filtered white no|se 61



If, however, a common set of basis functions is used for both input and output signals and

if these _i(t) are taken to be the solutions of the integral equation j:

, 7ti_i(t ) = q_i($) h(t - T) d_- 0 _< t _< T

then the relation of Eq. (6) will still be true but now [H] will be a diagonal matrix with the eigen-

values X. along the main diagonal. This result, which is related to the spectral decomposition
i

of linear self-adjoint operators, 62'63 has two important features. First, and most obvious, the

diagonalization of the matrix [H] leads to a much simplified calculation of_rj given -JS" Equally

important, however, this form for [H] has entries depending only upon the filter impulse re-

sponse h(t). Although not a priori obvious, these two features are precisely those required of

a signal representation to allow evaluation of probability of error for digital transmission over

time-dispersive channels.

C. DIMENSIONALITY OF FINITE SET OF SIGNALS

This section concludes the general discussion of the signal representation problem by pre-

senting a definition of the dimensionality of a finite set of signals that is of independent interest

and is, in addition, of considerable use in defining the dimensionality of a communication channel.

An approximation often used by electrical engineers is given by the statement that a signal

which is "approximately" time-limited to T seconds and "approximately" band-limited to W cps

has 2TW "degrees of freedom"; i.e., that such a signal has a "dimensionality" of 2TW. This

approximation is usually justified by a conceptually simple but mathematically unappealing argu-

ment based upon either the sampling representation or the Fourier series representation pre-

viously discussed. However, fundamental criticisms of this statement make it desirable to

adopt a different and mathematically precise definition of "dimensionality" that overcomes these

criticisms and yet retains the intuitive appeal of the statement. Specifically, these criticisms

are:

(t)

(2)

Ifa (strictly) band-limited nonzero signal is assumed, it is known 58 that

this signal must be nonzero over any time interval of nonzero length.

Thus, any definition of the "duration" T of such a signal must be arbi-

trary, implying an arbitrary "dimensionality," or equally unappealing,

the signal must be considered to be of infinite duration and therefore of

infinite "dimensionality." Conversely, if a time-limited signal is as-

sumed, it is known 58 that its energy spectrum exists for all frequencies.

Thus, any attempt to define "bandwidth" for such a signal leads to sim-

ilar problems. Clearly, the situation in which a signal is neither band-

limited nor time-limited, e.g., s(t) = exp[-{tl] where-oo < t <oo, leads

to even more difficulties.$

The fundamental importance of the concept of the "dimensionality" of a

signal is that it indicates, hopefully, how many real numbers must be

given to specify the signal. Thus, when signals are represented as points

in n-dimensional space, it is often useful to define the dimensionality of

a signal to be the dimensionality of the corresponding vector space. This

"_Again, there are mathematical restrictions on h(t) before the following statements are strictly true. These

conditions64, 65 are concerned with the existence and completeness of the _i(t) and are of secondary Tnterest at

this point.

$ It should be mentioned that identical problems are encountered when an attempt is made to define the "dimen-

slonality" of a channel in a similar manner. This problem will be discussed in detail in Chapter III.
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definition, however, may lead to results quite different from those ob-

tained using the concept of "duration" and "bandwidth." For example,

consider an arbitrary finite energy signal s(t). Then by choosing for
an orthonormal basis the single function

s(t)

(Pl(t) = [___ s2(t)dt] I/2

it follows that

s(t) = sl(Pl(t )

where, as usual,

oos I = s(t) (pl(t) dt

Thus, this definition of the dimensionality of s(t) indicates that it is only

one dimensional in contrast to the arbitrary (or infinite} dimensionality

found previously. Clearly, such diversity of results leaves something to
be desired.

Although this discussion may seem somewhat confusing and puzzling, the reason for the

widely different results is readily explained. Fundamentally, the time-bandwidth definition of

signal dimensionality is an attempt to define the "useful" dimensionality of the vector space ob-

tained when the basis functions are restricted to be either the band-limited sin x/x functions or

the time-limited sine and cosine functions. In contrast, the second definition of dimensionality

allowed an arbitrary set of basis functions and in doing so allowed the _i(t) to be chosen to mini-

mize the dimensionality of the resulting vector space.

In view of the above discussions, and because it will prove useful later, the following defi-

nition for the dimensionality of a set of signals will be adopted: _

Let S be a set of M finite energy signals and let each signal in this set be

represented by a linear combination of a set of orthonormal functions, i.e.,

N

sj(t) = _ sij(Pi(t) for all sj(t) _ S

i=l

Then the dimensionality d of this set of signals is defined to be the minimum

of N over all possible basis functions, i.e.,

d A__ rain N

{_Pi(t)}

The proof that such a number d exists, that d_ M, and the procedure for finding the {(Pi(t)}

have been presented elsewhere 59 and will not be considered here. It should be noted, however,

that the definition given is unambiguous and, as indicated, is quite useful in the later work. It

is also satisfying to note that if S is a set of band-limited signals having the property that

I for all i < I or i > 2TWsj(i/2W) = 0
for all s.(t) ¢ S

J

tThis definition is just the translation into engineering terminology of a standard definition of linear algebra. 55'66
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then the above definition of dimensionality leads to d --2TW. A similar result is also obtained

for a set of time-limited functions whose frequency samples all vanish except for a set of 2TW

values.

D. SIGNAL REPRESENTATION FOR FIXED TIME-CONTINUOUS CHANNELS
WITH MEMORY

In Sec. I-E, it was demonstrated that a useful model for digital communication over fixed

time-continuous channels with memory considers the transmission of signals of T-seconds dura-

tion through the channel of Fig. I and the observation of the received signal y(t) for T 1 seconds.

Given this model, the problem is to determine the probability of error for an optimum detector

and a particular set of signals and then to minimize the probability of error over the available

sets of signals. Under the assumption that the vector space representation is appropriate for

this situation, there remains the problem of selecting the basis functions for both the transmitted

signals x(t) and the received signals y(t).

_IL,NEARF, ER1r,,

x(t) - I h(,} J . _ y(t} Fig. 1. Time-continuous channel with
memory.

/n(t) GAUSSIAN WITH SPECTRAL DENSITY N(f)

max [H[f} I =1

f n(t)

If_x, I_, and y are the (column) vector representations of the transmitted signal (assumed

to be defined on O,T), additive noise, and received signal (over the observation interval of'l' t

seconds), respectively, an arbitrary choice of basis functions willleadto the vector equation

y = [H] x + n (7)

in which all vectors are, in general, infinite dimensional, _n may have correlated components,

and [HJ will be an infinite dimensional matrix related to the filter impulse response and the sets

of basis functions selected.I If, instead, both sets of basis functions are selected in the manner

presented here and elsewhere, 67 it will be found (t) that [H]is a diagonal matrix whose entries are

the square root of the eigenvalues of a related integral equation, and (Z) that the components of

n are statistically independent and identically distributed Gaussian random variables. Because

of these two properties it is possible to obtain a meaningful and relatively simple bound on prob-

ability of error for the channel considered in this work.

In the following discussion it would be possible, at least in principle, to present a single

procedure for obtaining the desired basis functions which would be valid for any filter impulse

response, any noise spectral density, and any observation interval, finite or infinite. This

approach, however, leads to a number of mathematically involved limiting arguments when

white noise and/or an infinite observation interval is of interest. Because of these difficulties

the following situations are considered separately and in the order indicated.

tit is, of course, possible to obtain statistically independent noise components by using for the receiver s_gnal
space basis functions the orthonormal functions used in the Karhunen-Loeve expansion of the noise 54,60 How-

ever, this will not, in general, diagonalize [H].
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Arbitrary filter, white noise, arbitrary observation interval (arbitrary Tl);

Arbitrary filter, colored noise, infinite observation interval (T t = _);

Arbitrary filter, colored noise, finite observation interval (T l < _).

Due to their mathematical nature, the main results of this section are presented in the form

of several theorems. First, however, some assumptions and simplifying notation will be

introduced.

Assumptions.

(t) The time functions h(t), x(t), y(t), andn(t) are in all cases real.

(2) The input signal x(t) may be nonzero only on the interval [0, T] and has

finite energy; that is, x(t) E _2(0, T) and thus

Sx2(t) dt = x2(t) dt <

(3) The filter impulse response h(t) is physically realizable and stable. 56

Thus, h(t) = 0 for t < 0 and

(4) The time scale for y(t) is shifted to remove any pure delay in h(t).

(5) The observation interval for y(t) is the interval [0, TI] , unless otherwise
indicated.

Note: Assumptions 3, 4, and 5 have been made primarily to simplify the proof that the _i(t)

are complete. Clearly, these assumptions cause no loss of generality with respect to "real

world" communication problems. Furthermore, completeness proofs, although considerably

more tedious, are possible only under the assumption that

Notation.

_ h2(t) dt<

The standard inner product on the interval [0, T] is written (f,g); that is,

SoF(f, g) _ f(t) g(t) dt

The linear integral operation on f(t,s) by k(t,T) is written kf(t,s); that is,

Skf(t, s) _ k(t, r) f(% s) dT

The generalized inner product on the interval [0, Tt] is written (f, kg) T ;
that is, t

So• So• s(f, kg)T _ 1 f(t) kg(t) dt = t f(t) k(t,r) g(T) d_dt

With these preliminaries the pertinent theorems can now be stated. The following results are

closely related to the spectral decomposition of linear self-adjoint operators on a Hilbert

13



space. 62'63'66 It should be mentioned that all the following results can be applied directly to

time-discrete channels by simply replacing integral operators with matrix operators.

1. Basis Functions for White Noise and an Arbitrary Observation Interval

Theorem 1.

Let N(f) = t, define a symmetric function K(t,s) = K(s,t) in terms of the filter impulse re-

sponse by

K(t,s) ZX {fft h(r-t) h(r-s) dr 04t, s_T

L0 elsewhere

and define a set of eigenfunctions and eigenvalues by

= Koi(t) [ 0..< t ..< TXi¢ i(t) I i = _, z .... (8}

[Here and throughout the remainder of this work, it is assumed that q)i(t) = 0 for t < 0 and

t > T, i = t,2 ..... ] Then the vector representation of an arbitrary x(t) E _2(0, T) is x, where

x i = (x, _i ) and the vector representation of the corresponding _ y(t) on the interval [0, T 1)

(T t >_T)$ is given by Eq.(7) in which the components of n are statistically independent and iden-

tically distributed Gaussian random variables with zero-mean and unit variance and

-E

(HI =

0

E

J2n

The basis functions for y(t) are {Oi(t)} , where

/_Xi- hei(t) 0..< t..< T t
@i(t)

z

!
t 0 elsewhere

and the ith component of y is

Yi = (y' Oi)Tl

Note: To be consistent with the literature,64'65 it is necessary to denote as eigenfunctions

only those solutions of Eq. (8) having X i > 0. This restriction is required since mathematicians

normally place the eigenvalue on the right-hand side of Eq. (8) and do not consider eigenfunctions

with infinite eigenvalue.

t The representation for y(t) neglects a noise "remainder term" which is irrelevant in the present work. See the

discussion followlng the proof of Lemma 3 for a detailed consideration of this point.

SAIl the following statements will be true if T1 < 1" except that the {el(t)} will not be complete in _'2(0,T).
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I
'0

Proof.

The proof of this theorem consists of a series of Lemmas. The first Lemma demonstrates

that eigenfunctions of Eq. (8) form a basis for _?2(0,r), i.e., that they are complete.

Lemma l(a).

If T 1 _T, the set of functions {_i(t)} defined by Eq.(8) form an orthonormal basis for _2(0, T),

that is, for every x(t) _ _2(0, T)

x(t)= 2 xi_°i(t) 0.<t_<T

i= t

where x i = (x,_i) and mean-square convergence is obtained.

Proof.

Since the kernel of Eq. (8) is _2 (see AppendixA) and symmetric, it is well known 64 that at

least one eigenfunction of Eq. (8) is nonzero, that all nonzero and nondegenerate eigenfunctions

are orthogonal (and therefore may be assumed orthonormal) and that degenerate eigenfunctions

are linearly independent and of finite multiplicity and may be orthonormalized. Furthermore,

it is known 61'65
that the {_i(t)} are complete in _J2(0,T) if and only if the condition

(f, Kf)Tt = 0 f(t) _ _2(0, T)

implies f(t)= 0 almost everywhere on [0,T]. But

So[sT ](f, Kf)T t = t f(T) h(t -- 7) dr dt

Thus, to prove completeness, it suffices to prove that if

oT f(r) h(t - r) d_- = 0 0.<t..< T 1 with T t >_T

then f(t)= 0 almost everywhere on [0,T]. Let

u(t) = f(r) h(t - T) dt

and assume that

u(t) = I0 t_< T 1

Iz(t --TI) t > T I

where z(t) is zero for t < 0 and is arbitrary elsewhere, except that it must be the result of

passing some _2(0, T) signal through h(t). Then

£o _ -STlU(s) = u(t) e -st dt = e Z(s) = F(s) H(s) Re[sl >/0 (9)

Now, for Re[s] >/0,

t5



IZ(s)[: _o

°

z(t) e -st dt ...<_o

,z(t)l at =_o_ _ T

IflTIt _o_

However, from the Schwarz inequality,

So Is:If(T) 1 dT..<

and, from assumption 3,

f*o lh(t)l dt <_
t) c_

Thus,

Iz(t)l exp{-Re[s] t} dt

[h(t) I dt

f(7) h(t -- 7) d'r dt

5oIh(t-7) t dtdT..< If(7)l dT

da_oT f2(T) d711/2

Re[s] >/0t/2 _
f2(7) dT Ih(t)l dt<

Since f(t) _ _2(0. T). this result combined with Eq. (9) implies that there exists a constant A

such that

IF(s) HIs)[..<a exp{-Re[s] Tt} for Rels] >_0

From a,Lemma of Titchmarsh 68 it follows that there exist constants c_ and ;9 with

c_ + fl: Tt. such that

where AtA 2 = A.

and similarly

IF(s)] ..<A t exp{-Re[s] c_}

[H(s)] ..< A 2 exp{-Re[s] fl}

Finally. since

f(t) = _ j.o F(s) e st ds

Re[s] >/0

Re[s] >/0

h(t) : _ _j.o H(s) e st ds ,

these conditions and ordinary contour integration around a right half-plane contour imply that

f{t) = 0 t < c_

h(t) = 0 t < fl

From assumptions 3 and 4, h(t) is physically realizable and contains no pure delay. Thus, by

choosing /_ = 0, it follows that c_ = T t and, if T t >/T, that f(t) : 0 almost everywhere on [0, T].

This completes the proof that the {_0i(t) } are complete.
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The following Lemma demonstrates that the {Oi(t)} defined in the statement of the theorem

are a basis for all signals at the filter output, i.e., all signals of the form

r(t) = ;)

Lemma l(b).

x(r) h(t - r) dr
0_t_<T t

x(t) _ _Z(0, T)

Let r(t) and @i(t) be as defined previously. Then

oo

r(t) = _, ri@i(t) 0_t.<T 1

i=l

where ri = (r,Oi)Tl = _i xi' xi = (x,¢i), and uniform convergence 69

Proof.

Define two functions rn(t) and Xn(t) by

n

Xn(t)_ _ xi_0i(t) 0..<t.<T

i=I

where

and

Th en

x i = (x, q)i)

rn(t) _ Xn(r) h(t - T) dt 0_< t.< T t

[r(t)-rn(t)[ = I_T [x(T)-Xn(r)]h(t-r)dr [

.< [x(r)-Xn(r) [h(t--T)[ dr

Thus, from the Schwarz inequality,

[ r(t) - rn(t) Iz..< Ix(r)- Xn(r)

._ IX(T) -- XnlT )

However, by assumption

h 2
_oo

2 d_- h2(t - T) dT

_oo
2 dT h2(t) dt

_oo

is obtained.
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and Lemma l(a) proved that

_0T Xn(T) I2
lira Ix(T) -

n_

Thus,

lim Ir(t) - rn(t) l = 0
n_oo

and uniform convergence is obtained.

n

rn(t ) =

i=i

it follows that

and therefore that

= 0

But

Since

Thus,

n

xihq_i(t ) = _,

i= l

OSt_<T l

oo

r(t) = _ _i xiei(t)
i=t

oo

(r, OJ)Tt = _' _i xi(6)j' 6)i)Ti
i= t

_i xi@i (t)

_ 1 (h(pj, h(p _ t {_j, K¢_i ) = (¢
{@j, (gi)Tt _ i)Tt

r(t) =

and the Lemma is proved.

j, ¢_i ) = 6ij

_, (r, Oi)Tt Oi(t)
i= t

The following Lemma presents the pertinent facts relating to the representation of n(t) by

the functions {@i(t)}.

Lemma l(c).

Let the {Oi(t} } be as defined above.

oo

n(t) = _ ni6)i(t) + nr(t)

i=t

where

n i = (n, @i)T
t

n. = 0
1

n.n. = 6..

i j ij

Then the additive Gaussian noise n(t) can be written as

0_<t4T t
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and the random processes

Proof. t

Defining

E

i=l
niOi(t) and nr(t) are statistically independent.

oo

nr(t) = n(t)- 2 ni0i(t)

i= 1

it follows that n(t) can be represented in the form indicated.

process. Therefore,

By assumption, n(t) is a zero-mean

_i = (n, Oi) T = (_,Oi} T = 0
t t

nin j = (n, Oi)Tl (n, Oj)Tt = _;t _TI n(T) n(t) Oi(T) Oj(t) dTdt

_oTIS; t 6(T t) Oi(T)Oj(t)dTdt (Oi' Oj)T 1 ij
= -- = = _..

and

(Note that unit variance is obtained here due to the normalization assumed in Fig. l.) Next, let

ns(t) be defined as

oo

ns(t)= _ niOi(t) 0-.<t..<T 1

i= t

and define n and n by
--S --r

n = [ns(ti) , ns(t2) .... ns(tn)l--S *

n : [nr(t_) ,nr(t_) ..... nr(tm)]--r

Then, the random processes ns(t) and nr(t) will be statistically independent ifand only if the

joint density function for n and n factors into a product of the individual density functions,
--S --r

that is, if

P(ns, n_r ) = Pt(ns) P2(_nr) for all {ti} and {t[}

t The following discussion might more aptly be called a plausibility argument than a proof since the series
o0
I does not converge and since n(t) is infinite bandwidth white noise for which time samples do not exist.i=1 niSi(t)

However, this argument is of interest for several reasons: (a) it leads to a heuristically satisfying result, (b) the
same result has been obtained by Price 70 in a more rigorous but considerably more involved derivation, and (c) it

can be appl |ed without apology to the colored noise problems considered later.

t9



However, since all processes are Gaussian it can be readily shown that this factoring occurs

when all terms in the joint covariance matrix of the form ns(t i) nr(t i) vanish. From the previous

definitions

as(t , nr(t' ) = [i_ ni@i(t)l [n(t')--_ ni@i(t')]i

= _ _Tt n(_-)n(t')Oi(_-)Oi(t)dT-- _ _, ninjOi(t)@j(t')

i i j

= 5 Oi(t') Oi(t)-- _ Oi(t') Oi(t) = 0

i i

Combining the results of these three Lemmas, it follows that for any x(t) e _z(O,T)

and

x(t) = _, xiq_i(t)

i

y(t) = _, YiOi(t) + nr(t)

i

where

• = (x, (pi)X 1

and

Yi = (y'Oi)T = _i xi + ni
t

n i = (n, 6)i) T
t

Thus, only the presence of the noise "remainder term" nr(t) prevents the direct use of the

vector equation

y = [HI x + n

It will be found in all of the succeeding analyses, however, that the statistical independence of

the ns(t) and nr(t) processes would cause nr(t) to have no effect on probability of error. Thus,

for the present work, nr(t) can be deleted from the received signal space without loss of gener-

ality. This leads to the desired vector space representation presented in the statement of the

theorem. Q.E.D.

2. Basis Functions for Colored Noise and Infinite Observation Interval

This section specifies basis functions for colored noise and a doubly infinite observation in-

terval. Since many portions of the proof of the following theorem are similar to the proof of

Theorem t, reference will be made to the previous work where possible. For physical, as well
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as mathematical, reasons the analysis of this section assumes that the following condition is

satisfied:

_ Itt(f) 12-_ N(f) df <

Theorem 2.

Let the noise of Fig. t have a spectral densityN(f), define two symmetric functions K(t-s)

and Kl(t - s) by _

K(t- s)_=___

Io

IH (f) I2
N(f) exp[jco(t - s)] df 0.< t,s_< T

elsewhere

and

Kt(t - s) _ N(f) -1 exp[jc0(t - s)] dt
_oo

and define a set of eigenfunctions and eigenvalues by

= K¢i(t) [0 _< t _< TXiq_ i(t)
li : l, z .... (lo)

Then the vector representation of an arbitrary x(t) ¢ _2(0, T) is x, where x i = (x,¢i) and the

vector representation of the corresponding y(t) on the doubly infinite interval [-_,_] is given

by Eq.(7) in which [H] and _n have the same properties as in Theorem t. The basis functions

for y(t) are

and the ith

= /_ h¢i(t)
Oi(t)

tu

component of y is

04t<_

t<0

ooYi = <y'KtOi>Zx __ y(t) KlOi(t) dt

Proof.

Under the conditions assumed for this theorem, the functions {el(t)} of Eq.(t0) are simply

a special case of Eq. (8) with T t = +_. Thus, they form a basis for 22(0 ,T) and the representa-

tion for x(t) follows directly. [See Lemma l(a) for a proof of this result and a discussion of the

convergence obtained.] By defining Oi(t) as it was previously defined, it follows directly from

Lemma t(b) that the filter output r(t) is given by

t Because N(f) is an arbitrary spectral density, it is possible that N(f) -1 will be unbounded for large f and there-

fore that the integral defining Kl(t - s) will not exist in a strict sense. It will be observed, however, that

Kl(t -s) is always used under an integral sign in such a manner that the over-all operation is physically mean-
ingful. It should be noted that the detection of a known signal in the presence of colored Gaussian noise involves

an identical operation. 54
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r(t) = 2 xioilt)
i= t

O_t<_

Furthermore, since

_ 1 <h@i, Klh@j >

<O i, KIE)j> 4XiX j

_ t _ (pi((x) h(t -or) d(x Kt(t - s) Cj(p) h(s -p) dp ds

- ¢i(a) _j(p) h(t -or) Kt(t - s) h(s -p) dt ds dcr dp

= - _i (if) q_j(P) N(f) exp[jw(cr - p)] dfdcr dp

i (_i, K(pj)T = (¢i,_j) = 5i j

it follows that

<r,Kpi>= 4_i xi

and thus that

r(t)= _ <r, Kiei> el(t)

i=l

Finally, with _n(r) and n i defined by

_n(r) &-- N(f) e ]wr df
_oo

nia <n,Kpi>

it follows that

n i =<_,KlOi>= 0

and

nin j = <n, Kl@i><n, KI6)j>

f f= I '_n(t- s) Kt(t- cr) ei(G ) de Kt(s -p) ej(p) do dtds
_oo _co _co _oo

fY ff= Oi(a ) Oj(p) dadp _n(t- s) Kt(t- a) Kl(S- p) dsdt
_co _oo _oo _oo

dt
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or

FFninj = __ _oo Oi(a) @J(P) Ki(a-p) d(_dp = <6)i, KiOj>= 5ij

From this it is readily shown, following a procedure identical to that used in Lemma l(c), that

the random processes ns(t) and nr(t) defined by

ns(t) = _ niOi(t)

i=t

nr(t ) =/x n(t)- ns(t)

are statistically independent. Thus, neglecting the "remainder term" leads to

y(t) = _ Yi@i(t)

i=t

where

Yi = <y' KlOi >= _i xi + ni

or, in vector notation,

y = [H] x + n

3. Basis Functions for Colored Noise and Finite Observation Interval

This section specifies basis functions for colored noise and an arbitrary, finite observation

interval. As in Sec. II-D-2, it is assumed that

o iH(f) j 2
_oo N(f) df < _o

Theorem 3.

Let the noise of Fig. t have a spectral density N(f), define a function$ Kt(t,s) by

_oTt ln(t - a) Kt(a , s) da = 5(t - s) 0,< t, s _< T t

where

ooin(T) _ N(f) e j_°r df
_oo

define a function K(t, s) by

h(cr -- t) Kt(a, p) h(p -- s) da dp O_ t,s..<T

elsewhere

t Comments identical to those in the footnote to Theorem 2 also apply to this "function."
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and define a set of eigenfunctions and eigenvalues by

Xi_i(t) = K_i(t) IO_

t_< T

li = l, 2 .... (11)

Then the vector representation of an arbitrary x(t) e _2(0, T) is _x, where x.1 = (x,q)i) and the

vector representation of the corresponding y(t) on the interval [0, Tt] is given by Eq. (7) in which

[H] and n have the same properties as in Theorem i. The basis functions for y(t) are

f_

@i(t ) = l_iXi hq°i(t)

0,.< t ..< T I

to elsewhere

component of y is

Yi = (y' KtOi)T

and the i th

Proof.

This proof consists of a series of Lemmas. The first Lemma presents an interesting prop-

erty of a complete set of orthonormal functions.

Lemma 3(a).

Let {Ti(t) }be an arbitrary set of orthonormal functions that forma basis for _2(0, T1), i.e.,

they are complete in_2(0, Tt). Then

oo

V
/, 7i(t) _/i(s) = 5(t- s) 0..<t,s..< T t

i=l

in the sense that for any f(t) e _2(O, TI)

l'i'm' _Ti f(ff'[i_'n_ -t Ti(t, 7i(ff']
dcr = f(t)

Proof.

By definition, a set of orthonormal functions {-Yi(t)} that are complete in _2(0, T t) have the

property that for any f(t) E _ 2(0, T t)

n

f(t) = 1.i.m. 2 (f, 7i) T 7i(t) 0-.<t-.<T 1
n _o t

i=t

that is,

n 1f, ,=lim do
n_° i= t

The following Lemma provides a constructive proof that the function Kl(t, s) defined in the

theorem exists.
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Lemma 3(b).

Define a function Kn(t - s) by

[i (t-s) 0..<t,s_ T I

Kn(t- s) _= 10 n elsewhere

and define a set of eigenfunctions {Ti(t) } and eigenvalues {/3i} by

fliTi(t)= KnTi(t) I] _ t $ T I
= 1,2,...

Then

¢o

Kt(t,s) = 2 7i(t) 7i(s)
fli 0"< t' s "< Tt

i= 1

Proof.

From Mereer's theorem 64 it is known that

in(t- s) = 2 fliTi(t) 7i(s) 0.<t,s.< T t

i= t

Thus, with

ao

Kl(t, s) = 2 7i(t) 7i(s)
fli 0"< t' s "< Tt

i=t

it follows that

_oT _ji _n(t_a)Kt(a,s ) da = 2 2 _i ?j(t)3,i(s)(yj,Ti)T

i j

= _ _i (t) 7i(s)

i

together with Lemma 3(a) and the known 6t fact that the {Ti(t)} are complete, finishes
This result,

the proof.

Lemma 3(c).

If T t >/T, the {_0i(t) } defined by Eq.(tt) form an orthonormal basis for _2(0, T), that is, for

every x(t) • _2(0, T)

x(t)= 2 xi_°i(t) 0..<t_<T

i= t

where

x = (x, ¢i ) and convergence is mean square.
i
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Proof.

Since K(t,s) is an _2-kernel,J_ it follows from the proof of Lemma l(a) that the {_i(t)} are

complete in _ 2(0, T) if and only if the condition

(f,Kf) T = 0

implies f(t)= 0 almost everywhere on [0,TI. But

(f'Kf)T =_oTl _Tto

Thus, from Lemma 3(b),

(f,Kf) T =

I _oT _T f(t) h(e -- t) KI((7, p) h(p - s) f(s) dt ds d_y d o
O

2 _ii f(t) h(e- t) Ti(e) dt de
i

and it follows that the condition

(f,Kf) T = 0

implies

h(e- t) dt I Ti(e) de = 0
i= t,2,...

However, the completeness of the 7i(t) implies that the only function orthogonal to all the 7i(t)
65

is the function that is zero almost everywhere. Thus (f, Kf) T = 0 implies

T f(t) dt = 0 almost everywhere on [0,
h(e t) T 1]

and, from theproof of Lemma t(a), it follows that, for T t >_ T, f(t)= 0 almost everywhere on [0,T].

This finishes the proof that the {_0i(t) } are complete. The following paragraph outlines a

proof of the remainder of the theorem.

With @i(t) as previously defined, it follows directly from Lemmas t(b) and 3(c) that for any

x(t) e _2(0, T) the filter output r(t) is given by

r(t)= _ £xiOi(t) 0,.<t..<T t

i=t

Furthermore, by a procedure identical to that in Theorem 2, it follows that

(@ i, Ktej)Tt -

which implies that

(r, KtOi) T t

t

_ (_° i, K(pj) T = 6ij

= _-_i xi

t See Appendix A.
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and thus that

i= l

Next, with n i defined by

n i = (n, KIOi)TI

it follows that

r(t) = 2 (r, KlOi)Tl @i(t)

_i = (H, KIOi)Ti = 0

and, by a procedure identical to that in Theorem 2, that

= (n, KtOj)Tt (@i' KtOj)T 1 6ijnin j (n, KtOi)T t = =

From this it is readily shown, following a procedure identical to that in Lemma l(c), that the

random processes ns(t ) and nr(t ) defined by

oo

ns(t) ZX 2 niOi(t) 0..<t..<T t

i= t

nr(t ) ZX n(t) -- ns(t) 0,.< t ..< T 1

are statistically independent. Thus, neglect of the "remainder term" leads to

oO

y(t)= 2 YiOi (t) O..<t..<T t

i=t

where

Yi = (y' KtOi)T 1 = _i xi + ni

or, in vector notation

y=[H]x+n

and the theorem is proved.

4. Interpretation of Signal Representations

The previous sections have presented several results concerning signal representation for

the channel of Fig. 1. Since these results have of necessity been presented in a highly mathemat-

ical context, it is of interest to interpret these in terms of more physical engineering concepts;

in particular, it is desirable to interpret these in terms of optimum detectors for digital

co mmunieat ion.

Consider first the {_0i(t) }of Theorem t. The first and foremost property of these functions

is that they are solutions of the integral equation

•Xiqoi(t) = q0i(T) K(t, T) dr 04t.< T (12)
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where

K(t,s) =Io_I h(_- t) h(_- S) dcr

To understand the physical meaning of this relation, consider the optimum detector for white

noise and an observation interval [0, TI] when a time-limited signal x(t) is transmitted. If r(t)

is the corresponding channel filter output on [0, TI] , it is well known that the optimum detector

cross correlates r(t) with the channel output over the interval [0, TI]. Interpreted in terms of

linear time-invariant filters, ? this operation can be performed as shown in Fig. Z where the

matched filter has been realized as the cascade of a filter matched to the channel filter over the

interval [0, Tl] followed by a multiply-and-integrate operation. The significance of the fact that

the {_i(t)} are a solution to Eq. (IZ) is now made clear by noting that the (time-variant) impulse

response of the cascade of the channel filter and the "channel portion" of the matched filter is

•K(t, s) = I h(cr -- t) h(cr - s) d_ 0 .< t, s .< T (t3)

where K(t,s) is the response at time t to an impulse applied at time s. Thus, the {_oi(t) }are

simply a set of signals that are self-reproducing (to within a gain factor X i) over the interval

[0, T] when passed through the filter K(t, s).

nlt) x(t)

No= I

Fig. 2. Concerning interpretation of the {_i(t)} of Theorem 1.

This feature or, more basically, the fact that the {_i(t)}are a solution to Eq. (12), causes

the {@i(t)}to have two extremely important properties. This first property, that the {@i(t)}are

orthogonal over the interval [0, T] and may be assumed normalized, is readily shown in the

following manner. Assume that for i @ j, X i @ k..$ Then it follows that
J

_oi(t ) Xj_oj(t) dt = _oi(t) _oj(r) K(t, r) drdt

or

kj(qoi, qoj) = (qoi, Kcj)

and similarly since K(t, s) = K(s, t),

So_0 j (t) Xi_0 i(t) °o _oj(t) _oi(r) K(t, 7) d_-dt

t Here, and throughout this work, the quesHon of the physical realizability of all filters other than the channel

filter has been ignored.

It can be shown via an argument too long to present here that all ¢pi(t) having a common eigenvalue can be

assumed to be orthogona1.64, 65

(t4)
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Cj(t)kiwi(t) dt = _i(_-) Cj(t)K(T,t)dtd7

or

ki(Oi, q_j) = (qoi, Kcj) (15)

Therefore, upon subtracting Eq. (t4) from Eq. (t5) it follows that

(kj - ki) (qoi, q0j) = 0

But, by assumption, (kj - k i) iA 0. Thus (q_i'q°j} = 0 and the {el(t)} are orthogonal. The fact that

the {(Pi(t)} can be assumed to be normalized follows directly from Eq. {tZ) by observing that if

q_i(t) is a solution to this equation, then cq_i(t ) is also a solution when c is an arbitrary constant.

The second property, that the {(pig)} are orthogonal over the interval [0, Ti] after passing

through the filter, follows in a straightforward manner. Let rj(t) be the channel filter output

when ¢j{t) is transmitted. Then

so• ;o t trig) rj(t) dt t T T= el(a) h(t -a) da Cj(p) h(t -p) dp dt

= _oi(a) cj(o) t h(t -o-) h(t -O) dtdo de

s: I= el(a) _j(p) K(a,p) dp da

s;= X. qoi(a ) qoj(cr) de = kj(_oi,_oj) = k.6. (t6)J J lj

Thus, the {¢i(t)}are orthogonal after passing through the filter. This property is important

because it allows the channel memory (its time-dispersive characteristic) to be treated analyti-

cally in terms of a number of parallel and independent time-discrete channels with different

gains. In other words, when the transmitted signal is written as

x(t) = _ xi¢i(t )

i

it follows from Theorem I that the received signal can be written as

y(t) = E YiOi (t)

i

where

el(t) _ _ _oT
_i ¢i(T) h(t - T) dT

and, due to the fact that the Oi(t) are orthonormal as just demonstrated [_i Oi(t) = ri(t)]'

=

Yi = (y' Oi)Ti _i xi + ni
(17)
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with

n.n. : 6..
1 j lj

This is simply a statement that to obtain y each coordinate of _x is passed through an independent

time-discrete additive Gaussian channel with gain _i and unity noise variance. Thus, for pur-

poses of analysis, the channel of Fig. I simplifies to that of Fig. 3.

I [ Fig. 3. Mathematical equivalent
I _, n, I of channel in Fig. 1.

Finally, it is of interest to interpret the inner product for Yi

Eq. (17), Yi is given by

_o I'I y(t) Oi(t) dt
=

Yi = (y' @i)T I

in terms of Fig. 2. From

_oT _o T 0i(_') h(t--_) dTdt
= t y(t) _i

i qPi(T) t y(t) h(t - r) dtdr (18)

Comparing Eq. (t8) with the filtering operations indicated in Fig. Z shows that Yi is precisely

t/_ itimes the output of the optimum (matched-filter) detector when q)i(t) is transmitted. This

result becomes important in practice when a large number (M >> d) of d-dimensional signals are

to be transmitted, since the construction of d "coordinate filters" is much simpler than the con-

struction of M different matched filters.

The previous discussion has shown that in spite of the highly mathematical nature of tile

signal representation of Theorem 1, it is possible to readily understand the important properties

of the {_0i(t)}by interpreting them in terms of optimum detectors. An analogous discussion of the

properties of the {_0i(t) } of Theorem 2 follows.

As before, the {el(t)} are defined as solutions to the integral equation

Xi¢pi(t) = ¢ i(T) K(t, r) dr 0,< t ,,< T 19)

where K(t, s) is now given by

K(t, s) = K(t - s) = _
_oo

2
IH(f) l expIjw(t - s)l df

N(f)

To obtain a physical understanding of Eq. (t9), consider the optimum detector for colored noise

and a doubly infinite observation interval when a time-limited signal x(t) is transmitted. It is
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x(t)

n(t),N(f) x(t)
.} J

"WHITENED" CHANNEL

Fig. 4. Concerning interpretation of the {¢i(t)} of Theorem 2.

known 54 that the optimum detector cross correlates the channel output y(t) with a function q(t)

over the doubly infinite interval, where

_ X(f) H(f) eJwtq(t) = __ N(f) df

Interpreted in terms of linear time-invariant filters, this operation can be performed as shown

in Fig. 4. Note that the optimum detector has been formed here as the cascade of a "prewhitening"

filter, a filter matched to the "whitened" channel filter characteristic and a multiply-and-integrate

operation. Upon observing that the impulse response of the cascade of the channel filter and the

"channel portion" of the optimum detector is given by

K(t) = _ _ ej_t
__o N(f) df

it follows from Eq. (19) that the {cPi(t)} are simply a set of signals that are self-reproducing (to

within a gain factor ki) over the interval [0, T] when passed through the filter K(t). As before,

this characteristic causes the {cPi(t)}to have two important properties. The first property, that

the {q0i(t)} are orthonormal, follows directly from the discussion of the {q0i(t) } of Eq. (12). The

second property, that the {q?i(t)}are orthogonal at the channel output with respect to a generalized

inner product, has been demonstrated in the proof of Theorem 2. A more physical interpreta-

tion of the latter property can be obtained by investigating the orthogonality of the cPi(t) at the

output of the "whitened" channel. Let ri(t) be the output of this channel when _0i(t) is transmitted;

let Oi(t ) and Kl(t) be defined as in Theorem 2, i.e.,

Oi(t ) 1 _T
= _ (?i(T) h(t - T) dr

and

oo t eJcot
Kt(t) = _oo N(f) df

and let hw(t ) be the impulse response of the "prewhitening" filter. Then

dt

= _ __o _oo Oi(a ) Oj(p) -_ hw(t--a) hw(t--p) dtdadp
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rj(t) ri(t )dt = @i(a) Oj(p)Kt(a- p) dp da

= _ (Oi' KtO j) = XiSij

where the last line follows from the proof of Theorem 2. Thus, the statement that the (Pi(t) are

orthogonal at the channel output with respect to a generalized inner product is equivalent to the

statement that the {(Pi(t)}are orthogonal at the output of the "whitened" channel.

From these orthogonality properties it follows as shown in Theorem 2, that if x(t) is written

as

x(t) = 2 xi¢i(t)

i

then y(t) can be written as

where

and

y(t) = 2 YiOi (t)

i

Yi = <y' KtOi) (20)

n.yl. = 6..

i j 1j

Thus, the orthogonality properties of the {(Pitt)} again allow the channel memory (its time-

dispersive characteristic and the colored noise) to be treated analytically in terms of a number

of parallel and independent channels with different gains as shown in Fig. 3.

Finally, it is of interest to interpret the inner product for Yi in terms of Fig. 4. From

Eq. (20), Yi is given by

S SYi = (Y'KtOi) = y(t) Kl(t- r) Oi(r) drdt
__ _ca

;o S_o T ¢pi(a) h(T--ff) Kl(t - T) dTd(Tdt

= _ y(t) _i

t _oT ff_ _H*(f)el(a) y(t)
_i .... N(f)

exp [jw (a - t)l dfdt de (2t)

Comparing Eq. (2t) with the filtering operations indicated in Fig. 4 shows that Yi is precisely

t/_ itimes the output of the optimum detector when (Pi(t) is transmitted. It is interesting to

note that this is identical to the resuit obtained previously for the {el(t)} of Theorem t.

In conclusion, it should be mentioned that the {¢i(t)}of Theorem 3 can also be interpreted

in terms of the appropriate optimum detector in a manner directly analogous to the preceding

discussion. In this case, however, the derivation of the (time-variant) "prewhitening" filter
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and the remainder of the optimum detector becomes as mathematically involved as was the proof

of the Theorem.

5. Some Optimum Signal Properties of Basis Functions

The functions {¢i(t)} have some additional properties that are of interest from the standpoint

of optimum signal design. Consider the situation in which one of two time-limited signals is to

be transmitted through the channel of Fig. t. Let these signals be +x(t). It is desired to select

the signal waveform x(t) so that the probability of error is minimized for fixed signal energy

when an optimum detector is used. Depending upon the noise spectral density and the receiver

observation interval, the following results are obtained, t

a. White Noise, Arbitrary Observation Interval [0,TI]

It is well known that the optimum detector (matched filter} for this situation makes a deci-

sion based upon the quantity

_;1 y(t) r(t) = (y, hX)T 1 =y • _r
dt

where r = [HI x denotes the usual vector inner product, and the basis functions, with respect to

which x, y, and r are defined, are those of Theorem t. The probability of error for this de-

tector is given by

__j__l_ E_-E-TNoexp[_i/2t21 dt
Pe = _ -

where

E = (hx, hX)T t = r • r = 2 k'xZt1
i= t

and N
O

is the (double-sided} noise spectral density.

(X, X) = X - X =

i=t

Thus, since the transmitted signal energy is

and since by convention (Ref. 64) )t t >/X2 >_ X3 >_ .... it follows that for fixed input signal energy

the output signal energy is maximum (and therefore the probability of error is minimum) when

x(t) = _0 t(t)._ More generally, it is quite easily shown from these results that x(t) = _0j(t) is the

signal giving maximum output energy on the interval [0, Tt] under the constraints

(x, q0i) = 0 i = t,2,...,j-t

(x, x) = t

t Note that these results assume either a single transmission or negligible intersymbol interference.

:_ Note that h i = (h_i'h_i)T, 1/(_i'_i)" Thus, h i is effectively,, an energy "transfer ratio" and _l(t) is the 92(0, T)
signal having the largest ' transfer ratio;' i.e., it is attenuated" least in passing through the filter. This property

appears to have been first recognized by Chalk 71 for the special case T1 = o%
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At this point, two additional properties of the {_0i(t)}of Theorem I should be mentioned:

(1) When T l = _, Eq.(7) reduces to the well-known 60 integral equation in-

volved in the Karhunen-Loeve expansion of a random process with auto-

correlation function In(t - s) = K(t, s);

(2) When K(t, s) is defined as

K(t,sl_=I!-_h(_- tlh(_- sl

do- 0..< t, s.< T

elsewhere

and h(t) is specialized to h(t) = (sinTrt)/Trt, the {_Pi(t)} are the prolate

spheroidal wave functions studied by Slepian, Pollak, and Landau. 72,73

The next section demonstrates that el(t) of Theorem 2 is the optimum signal for binary

transmission when the noise is colored and a doubly infinite observation interval is used.

b. Colored Noise, Infinite Observation Interval

The optimum detector for this situation is known 54 to make a decision based on the quantity

_oo y(t) q(t) dt

where

ooq(t) : X(fi(f_(f) e jwt df
_oo

Introducing the signal representation of Theorem 2, this becomes

_o_ y{t) q(t) dt = _y, Klr _ = y • _r = _y • [H] x
_oo

The probability of error for this case is determined by the quantity

oo

_ IX{f) H(f) l Z__o N(f) df=<r, Ktr)= r. r = 2 Xixi 2

i= t

which might aptly be called the "generalized E/No." Thus, since the input energy is (x, x) = x • x,

it follows that again x(t) = _01(t) is the optimum signal to be used to minimize probability of error

for fixed input signal energy.

In conclusion, the following section demonstrates that _0t(t) of Theorem 3 is the optimum

signal for binary transmission when the noise is colored and a finite observation interval [0, T t]

is used.

c. Colored Noise, Finite Observation Interval

For this situation, the optimum detector is known 54to make a decision based on the quantity

y:t y(t) q(t) dt

where
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I •

(r, 7i)Tt

q(t) ZX 2 /3i 7i(t)
i=t

0 4t-.< T t

w it h

/3iTi(t ) = Kn3,i(t) 0.< t..< T t

and

N(f) exp[jc0(t- s)] df 0_<t,s_<T t

elsewhere

In terms of the signal representation of Theorem 3, this becomes

Tt y(t) q(t) dt = t y(t) Bi "/i(t)

_'=

dt

Tt y(t) i r(s) /3 i ds dt

-t

= (Y, Ktr)Tt = 2 Yi_jxj(Oi, KtO j)Tt

i,j

2Yi_j xj = y • [Hlx=_y • _r

i

The probability of error is again determined by the "generalized E/N "" o' now given by

_OT Ktr)Tt 2
r(t) q(t) dt = (r, = r • r = k.x. 2

i i

i=t

Thus, since the input signal energy is (x,x) = x - x, it follows that again x(t) = ¢t(t) is the

optimum signal to use to minimize probability of error for fixed input signal energy.
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CHAPTER III

ERROR BOUNDS AND SIGNAL DESIGN FOR DIGITAL COMMUNICATION

OVER FIXED TIME-CONTINUOUS CHANNELS WITH MEMORY

In Sec. I-E, a model was introduced which involves the transmission of one of M signals of

T seconds duration through the channel of Fig. i and observation of the channel output for T i sec-

onds. Subsequently, it was shown that a suitable matrix representation for this problem is

y = [HI x + n (22)

where x, y, and n are the (column) vectors representing the channel input, output, and additive

noise, respectively, [HI is a diagonal matrix, and n has statistically independent and identically

distributed components. Using this representation and a slight generalization of recent results

of Gallager, 74'75 this chapter will present the derivation of a bound on probability of error and

provide some information on optimum signal design. 76'
77

A. VECTOR DIMENSIONALITY PROBLEM

Before proceeding with the derivation of an error bound, it is necessary to consider in de-

tail the dimensionality of the vectors involved. In deriving the representation of Eq.(22), it

was shown that the basis functions used in defining x are complete in the space of all _2(0, T)

signals, that is, in the space of all finite-energy signals defined on the interval [0, T]. Since it

is well known that this space is infinite-dimensional, 64 it follows that, in general, the vectors,

as well as the matrix, of Eq. (22) must be infinite-dimensional. In many cases, this infinite

dimensionality is of no concern and mathematical operations can be performed in the usual man-

ner. However, an attempt to define a "density function" for an infinite-dimensional random

vector leads to conceptual as well as mathematical difficulties. Consequently, problems in

which this situation arises are usually approached 54 by assuming initially that all vectors are

finite-dimensional. The analysis is then performed and an attempt is made to show that a lira-

iting form of the answer is obtained as the dimensionality becomes infinite. If such a limiting

result exists, it is asserted to be the desired solution. This approach is used in the following

derivations in which all vectors are initially assumed to be d-dimensional. However, for this

problem, it will be shown that for minimum probability of error the signal vectors should be

finite dimensional. Furthermore, it will be found that the "optimum" dimensionality is inde-

pendent of d (assuming that d is large) and thus that the original restriction of finite d involves

no loss of generality. This result is obtained because the Xi in the [H] matrix approach zero

for large "i" and gives an indication of the useful "dimensionality" of the channel.

B. RANDOM CODING TECHNIQUE

This chapter is concerned with an investigation of the probability of error Pe for digital

communication over the channel of Fig. t. Ideally, the first step in this analysis would be the

derivation of an expression for the probability of error under the assumption of an arbitrary

set of M signals. This expression would then be minimized over all allowable signals to find

both the minimum possible probability of error and the set of signals that achieve this. How-

ever, it will be found here, as is usually the case, 5t'53 that an exact expression for P is im-
e

possible to evaluate by any means other than numerical techniques. Thus, it is necessary to
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investigate some form of an approximate solution to this problem. The approach used here

involves an application of the random coding technique to a suitable upper bound to Pc"

Conceptually, the random coding technique may be viewed in the following manner. First,

an ensemble of codes _ is constructed by selecting each code word of each code independently

and at random according to a probability measure p(x). In other words, for each code word

Pr {X:_l < xt < _t + d_t'_2 < x2 < _2 + d_2 ..... _k < Xk < _k + d_k .... }

= p(!) d_td42...d_k... = p(_) d__

and, furthermore, for any set of distinct code words, sayx t..... x s,

P(X t, x 2 ..... x s) = p(x t) P(X2)...p(x s)

Next, the probability of error for each code is evaluated. Finally, these values are averaged

over the ensemble of codes to find an average probability of error Pc" Viewed in this manner,

it seems that the random coding technique only makes an impossible problem even more difficult.

ttowever, the simple expedient of reversing the order of ensemble averaging and evaluation of

Pc' when coupled with a suitable bound on Pc' leads to a relatively simple expression for Pe

for the channel of Fig. t.

Accepting this statement, it is still not clear that knowledge of Pe is either meaningful or

usefuh For example, the knowledge of an average probability of error for an ensemble of codes

is quite different from a knowledge of Pe for a single code. Furthermore, it is not a priori ob-

vious that a knowledge of Pe will provide any information on the construction of good codes.

Finally, it is not clear that the value of Pc will provide any indication of the minimum possible

probability of error for a code since the ensemble averaging could include a large fraction of

codes having a high probability of error.

Fortunately, these doubts can be resolved quite readily. The very fact that Pe is an aver-

age over an ensemble of codes implies that there must be at least a fraction t/A (A > t) of the

codes in the ensemble that have a P less than AP . Thus, for example, the construction of a
e e

code by choosing each code word independently and at random according to the probability mess-

ure p(x) must lead, in 99 times out of t00, to a code having a Pe not greater than t00P e. AI-

though this procedure certainly does not yield a code having an absolute minimum probability of

error, it is at present the only general approach known for constructing large codes that have a

P that is even close to this minimum.$
e

Therefore, the only problem that remains to establish the usefulness of the random coding

technique is to determine the accuracy of Pe relative to the minimum possible Pc" For both

discrete, memoryless channels and the time-discrete Gaussian channel, this problem has been
51 53

studied by deriving a lower bound to Pe by means of the "sphere packing" argument. ' For

these channels it has been shown that the two exponents in the bounds to Pe and Pe are identical

for all rates between a rate R c and capacity. Furthermore, for the Gaussian channel the value

of R is less than the rate at which a digital communication system with coding would be operated.
C

For convenience, the terms "code" and "code word" are used here to mean, respectively, "a set of M finite

energy signals of T seconds duration" and "one of a set of M finite energy signals of T seconds duration" In

addition, no disHnction is made between a signa{ x.(t) and the vector x. representing tMs signal.
I -I

_/ The validHy and importance of tMs approach have been demonstrated experimentally with the SECO macMne. 50
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Thus, for this channel, the random coding technique provides a practical solution to the problem

of determining probability of error.

Since the determination of a lower bound to Pe does not appear practical for the channel of

Fig. l, the approach used here has been to specialize the Pe expression to the case considered

by Shannon 53 and then to compare this result to his. This analysis is performed in Sec. III-E

and indicates that the bound obtained in this work is quite accurate at rates above R .
c

One point that has not been considered is the question of how the probability measure p(x)

should be selected. Aside from noting that the ensemble of codes should satisfy an energy con-

straint of the form of Eq.(1), the only statement that can be made is that a mathematically trac-

table function should be chosen which "seems reasonable" on the basis of experience and intui-

tion. If the resulting expression for Pe can be shown to be sufficiently accurate, the problem

is solved. Otherwise, another choice would be tried. As a practical matter, it is found that

for the Gaussian channel of Fig. i the logical choice of a Gaussian p(x) of the form

p(x) = _I Pi(Xi)

i

where Pi(Xi) is a one-dimensionalGaussian density function, leads to satisfactory results.

C. RANDOM CODING BOUND

This section will derive a random coding bound on probability of error for digital communi-

cation over the channel of Fig. l. Let_x t ..... _xM be an arbitrary set of M d-dimensional code

words for use with this channel and assume that the a priori probability for each code word is

I/M. Let the probability density function for _Y given that_jx was transmitted be p(ylxj)._ Then,

it is well known 51'54 that the detector which minimizes probability of error decides that x. was
-j

transmitted if and only if

P(YlX k) 4 p(y[xj) for all k = I, 2 ..... M

Thus, if a set of M characteristic functions 69 are defined as

q_J(Y)_ /i [y:p(ylxk).< p(ylxj) for all k = t ..... ..... M]

-- [y:p(ylx k) > p(y[xj) for some k = l M]

it follows that the probability of error for this detector is given by

M M

p _ t \_ _0j(y) p(ylxj) dy A _ _ Pj(e) (23)
e- M _ y - - -=

j=t . -- j=t

This expression, while valid for any M and any set of signals { sj(t)}, is mathematically intrac-

table for interesting values of M. Thus, it is necessary to derive a bound on Pe that is surf/-

ciently accurate to be useful and yet is readily evaluated. The random coding technique dis-

cussed above when applied to a suitable upper bound to Eq. (23) gives such a result.

An obvious inequality is
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[ 1Cj(Y) _< _ [ P(YIXk)] I/l+p
_ [_j o>_o

k=]

k_j

since the right-hand side is always non-negative and is not less than t when p(yl_xj) < p(_yl_xk) for

some j _ k. Thus,

Pj(e)..< _y p(y[x_) t/t+p _ p(ylxk )l/l+p dy (24)

-- k=l

k_j

Now, let each code word be chosen independently and at random according to a probability meas-

ure p(x) and average both sides of Eq.(24) over this ensemble of codes. Then

Pj(e) =A _e,<_ Y p(y[x.)i/l+P_-J p(y[xk)i/i+p_ dy_

-- k=l

k_j

(25)

where the bar denotes averaging with respect to the ensemble of codes and the independence of

the selection of xj and_x k has been used__ for the average under the integral. Equation (25) can be

further upper bounded by noting that zp _< _P for 0.<p _< I (Ref. 78). Introducing this inequality

into Eq.(25), and recalling that the average of a sum of random variables equals the sum of the

individual averages, gives

_y X) I/(i+p)(i+p)--Pe < MP P(Y[-- _ dy_ O..<p_< t

OF

P <exp[--TE(R,p)] O_p_ i (26)
e

where

E(R,p) = Eo(p) --pR

, .,.,<,+,,Eo(p) = -_- in ptylxp p(x) d dy

in M
R-

r

This bound, which applies to any channel for which the indicated integrals exist, will now be

specialized to the channel of Fig. I. Recall that in deriving Eq. (26) it was assumed that the set

of signals {sj(t)} were d-dimensional, i.e., each of the signals could be written as alinear com-

bination of d basis functions. There was, however, no assumption made with respect to which

set of d functions should be used. Thus, if I denotes the set of integers that specify the basis

functions used and if the matrix representations of Theorems l, Z, and 3 are recalled, it follows

that for the channel of Fig. t
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__ i _ _ixi)2]p(ylx ) = _] i exp[___(y i
-

i_l

Next, let the probabllity measure p(x) which defines the random ensemble of codes be

p(x) = i-I (27r(7i2)-1/2 exp[-_

i¢I

(27)

(28)

There are two reasons for this choice of p(x):

(t) This form of p(x) results in a mathematically tractable expression for

the error exponent of Eq. (26).

(2) When the resulting exponent is specialized to the time-discrete case

considered by Shannon 53 it is within a few percent of his random coding

exponent (see Sec. III-E). Furthermore, Shannon's exponent was shown

to be identical to the exponent in a lower bound to probability of error

over a range of rates that are of considerable practical interest.

Finally, assume an average power constraint on the ensemble of codes of the form

m 2 = ST
1

i_I

(29)

Substituting Eqs.(27) and (28) into Eq.(26) gives, after evaluation of the integrals,

- 2T° In l+T-rTpj-oa
icI

(30)

where

For fixed R, maximization of Eq.(30) over p,__, and the set I gives the desired random-coding

error exponent. For convenience, let this maximization be performed in the order I,_%p.

Maximization over the set [ is easily accomplished by recalling 64 that the I i are by assump-

tion ordered so that ;kt >/l 2 >/l 3 .... Thus, the monotonic property of inx for x >/ I implies that

E(R,p,__) is maximized over the set I by choosing I = _l, 2.... ,d}.

The maximization over __ is most readily accomplished by using the properties of convex

functions 79 defined on a vector space. For this purpose, the following definitions and a theorem

of Kuhn and Tucker 80 (in present notation) are presented:

(1) A region of vector space is defined as convex if for any two vectors

and /3 in the region and for any X, 0_< X_ I, the vector ___ + (I - X)fl is

also in the region.

(2) A function f(_) whose domain is a convex region of vector space is de-

fined as concave if, for any two vectors _ and fl in the domain of f and

for any ;% 0 < ?,< I,

kf(0e) + (l --;k) f(fl)_< f[X__ + (t --k) fl]

From these definitions it follows that the region of Euclidean d-space

defined by the vector ___,with
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Fig. 5. Concerning interpretation of certain parameters in error exponent:

(a) Interpretation of BT(p) and N; (b) Interpretation of B(p) and W.
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O

d

2 =
cri _ 0 and 2 _.2 TS

1

i=l

is a convex region of vector space, that Inx is a concave function for

x >/I, that a sum of concave functions is concave, and thus that E(R,p, _)
is a concave function of (T.

Theorem 4 (Kuhn and Tucker).

Let f(a_) be a continuous differentiable concave function in the region in which a satisfies
d

a2 = TS and (T.2 > 0, i = I, 2, . .., d. Then a necessary and sufficient condition for (_ to maxi-
i:t 1 1

mize f is

of(__)

1

for all i with equality if and only if _i 96 0

where A is a constant independent of i whose value is adjusted to satisfy the constraint
d

E _.2 = TS.

i=l 1

It follows that the _ maximizing Eq. (30) must satisfy

DE(R, p, _) _ p Jti//(t
+ P)

..< A all i = t ..... d

with equality if and only if ft.2 > 0. Thus,
1

Z +P) p) -- i=t, 2 ..... N
ffi =

i=N+l ..... d (31)

where N is defined by

X N > BT(P) >/XN+ t

and

t A P

BT(P) = 2TA(t +p)

The value of BT(p), and thus N, is chosen to satisfy the constraint

N

a2:T S
i

i=l "

which yields

N
ST -1

-- + _ X.
t t +p i:1 t

: (32)
BT( p ) N

A convenient method for interpreting BT(0) and N is presented in Fig. 5(a). This is simply the

discrete form of the well-known water-pouring interpretation discussed by Fano 51 and others

for the special case of channel capacity. Substituting Eqs.(31) and (3Z) into Eq.(30) gives
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o

N
X.

E(R,p) = 2-_ _ In BT(p)
i=l

-pR (33)

Maximization over p

leads to the final result

ET(P ) = (i__)2 zS BT(P )

where

and

is accomplished using standard techniques of differential calculus and

R(1)._ R,.< R(0) (34)

N
k.

t 1
l_(p): -_ _, In

BT(P )
i=t

P )_ --_S--BT(P) 0_<p._< i (35)
(1+p

N
k.

t t
ET(R) = _-_ _ in BT(I )

i=l

--R 0_ R_< R(1) (367

A bound that is in some cases more useful, and in all cases more readily evaluated,

derived by considering Eqs.(34) to (36) for T -- _.

form for the exponent is

can be

It is shown in Appendix B that the resulting

p 2 S
E(p) =(_--p-) _B(p) l&c_< R_.< C

'_W I H(f) I 2,R(p) : In N(f) B(p) df (4. +Pp)2 S--B(P)z 0_p..< t

_W [H(f)lZE(R) = In N(f) B(1) df-- R 0..<R_< R c

(37)

(38)

(39)

where

c =R(O)

R = R(t)
c

S N(f) df

t z(,+p) + fw IH(f)[Z
B(p) = W

W= [+f: [H(f)12 ]N(f_ >_B(p )

A convenient method for interpreting the significance of B(p) and W is illustrated in

Fig. 5(b). Pertinent properties of the exponent of Eqs.(37) to (39) are presented in Fig. 6.

D. BOUND FOR "VERY NOISY" CHANNELS

In this section, an asymptotic form for the bound of Eqs.(37) to (39) is derived for the con-

dition S-- 0. Consider first the bound for 0_p_< I and recall (Fig. t) that N(f) is assumed to

be normalized so that

IH(f) l 2

max N{f)
f
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Fig. 6. Random coding exponent
for channel in Fig. 1.

SLOPE : -1

SLOPE :

p<C

Rc C

R (nats)

Thus, for S "sufficiently small," it is clear from the water-pouring interpretation of Fig. 5(b)

that except for pathological H(f) and N(f),?

IH(f) l z _ i
N(f)

for f E W

Introducing this approximation into the expression for ]3(p)gives

B(p ) = i S
t + S _ I 2W(I + p) for S _ 0

2w(t + p)

In view of this, Eq.(37) becomes to first order in S

E(p) _(t-_p) 2 SZ Rc"-_R4C

Introducing the same approximations into Eq. (38) gives

(40)

_W l p SR(p) _ In B--_p)df (l + p)2 2

_C [l._._- t] df p S

Jw B(p) (l + p)2 Z

S p S S
2(t +p) 2 - 0..<p_ t (4t)

(t +p)2 2(l +p)2

Finally, elimination of p between Eqs. (40) and (41) gives

E(R) = C I - R e..<R4 C (42)

where

S
C = --

2

S C
R -

c 8 4

In a similar manner, it is found that Eq. (39) becomes approximately

t R
E(R) _C [_ ---_] 0.< R...<R c (43)

tNote that due to the normalization of N(f) the statement that S is "sufficiently small" is equivalent to the
statement that a suitably defined signal-to-noise ratio is "sufficiently small."
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The result of

(i)

(2)

(3)

Eqs. (42) and (43) is of interest for several reasons.

It is independent of the filter and noise spectral characteristics and is
thus a "universal" bound for the channel of Fig. 1.

It is identical to the exponent in the bound on probability of error for the
transmission of orthogonal signals over a white Gaussian channel. 51 This

implies that for "sufficiently small" signal power the memory of the chan-
nel in Fig. i has negligible effect on probability of error.

Itagrees precisely with the small signal-to-noise ratio (SNR) bound
found by Shannon for the band-limited channel, 53 and is identical except
for the definition of C, to a bound found by Gallager 75 for "very noisy"

discrete memoryless channels. Thus, the bound of Eqs.(42) and (43)

can, when C is appropriately defined, be considered to be a "universal"
bound for "very noisy" time-invariant channels.

E. IMPROVED LOW-RATE RANDOM CODING BOUND

The previous sections have presented a random coding bound on probability of error for the

channel of Fig. t. As is usually the case with random coding bounds, 5t'53 this bound can be

shown to be quite poor under the conditions of low rate and high signal power. _ In fact, it is not

difficult to show that the true exponent in the bound on the smallest attainable probability of error

differs from the random coding exponent by an arbitrarily large amount as the rate approaches

zero and the signal power approaches infinity. This section presents an improved low-rate ran-

dom coding bound based upon a slight generalization of recent work by Gallager 75 that overcomes

this difficulty.

Before proceeding with the derivation of an improved bound, it is important to consider

briefly the reason for the inaccuracy of the random coding bound. As indicated previously, the

random coding bound is, in principle, obtained in the following manner. First, an ensemble of

codes is constructed by selecting each code word of each code independently and at random ac-

cording to a probability measure p(x). Next, the probability of error is calculated for each code.

Finally, these values of Pe are averaged to obtainPe. Note, however, that nothing in this pro-

cedure precludes the possibility that a small fraction of the codes in the ensemble may have a

Pe considerably greater than that for the remaining codes. Thus, it is possible that Pe could

be determined almost entirely by a small percentage of high Pe codes. (This is simply illus-

trated by considering a hypothetical situation in which i percent of the codes have a Pe of l0 -i

while the remaining 99 percent have a Pe of 10-t0.) An improved bound is derived here by ex-

purgating the high probability of error code words from each code in the ensemble used

previously.

Consider the channel of Fig. t and let _xl,_x 2..... x M be a set of code words for use with this

channel. Then, given that x. is transmitted, it follows from Eq.(24) that
-j

P.(e} 4 _ p(y Ixj)l/2
] y -

M

P(YlXk }t/2

k=t

k_j

dy
(44)

t Cornments analogous to those in the immediately preceding footnote also apply to the term "hlgh signal power."
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or equivalently

where

M

Pa'(e)_ _ Q(_xj, x k) (45)
k:l
k:_j

Q(xj, x k) : _'y p(y[xj) t/2 p(ylxk )1/2 dy_

From these equations it is clear that P.(e) is a function of each of the code words in the code.
]

Thus, for a random ensemble of codes in which each code word is chosen with a probability

measure p(x), Pj(e) will be a random variable, and it will be meaningful to discuss the probabil-

ity that Pj(e) is not less than some number A, that is, Pr {P.(e) >/A}. To proceed further, a
O 75

simple bound on this probability is required. Following Gallager, let a function _0j(xI..... _xM)
be defined as

t ifPj(e) >_Aej(_x I ..... x M) =
0 if P.(e) < A

a
(46)

Then, with a bar used to indicate an average over the ensemble of codes, it follows directly that

Pr {Pj(e) >/A} = (pj(x i ..... x M) (47)

From Eq. (45) an obvious inequality is

M

_0j(_xI ..... XM)_< A -s _, Q(xj, xk)s 0 < s..< t (48)
k=t

k_=j

since the right-hand side is always non-negative (for A > O) and is not less than t when P.(e) >_A
J

and 0 < s,.< 1. Thus,

M

Pr {Pj(e) _A}4A -s _ Q(xj, x_k)s 0<s4l
k=l

k@j

where, due to the statistical independence of x. and x k over the ensemble of codes,-j

(49)

In this form it is clear that Q(xj, xk)s is independent of j and k and therefore that Eq. (49) re-
duces to

Pr {Pj(e) >/A} ..< (M - l) A -s Q(xj, X_k)S 0 < s..< t (50)

At this point it is convenient to choose A to make the right-hand side of Eq. (50) equal to t/2.

Solving for the value of A gives
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XkS_/p]pA = [Z(M-- 1)]p q(_xj, p >_1 (5t

where p A t/s. Now, let all code words in the ensemble for which P.(e) >/A be expurgated.
= 3

Then from Eq.(5t) all remaining code words satisfy

Pj(e) < [2M] ° Q(xj, Xk )t/p P P >/t (5Z)

Furthermore, since Pr {Pj(e) >_A} ..< i//2, it follows that the average number of code words M'

remaining in each code satisfies M' >/M//2. Thus, there exists at least one code in the expur-

gated set containing not less than M//2 code words and having a probability of error for each code

word satisfying Eq.(52). By setting exp[RT] = M/2, it follows that there exists a code for which

Pc<4 p exp[-TEe(R,p)] p >_t (53)

where

e Ej(p) pREo(R,p) =

and

Ej(p) z& _ lnQ(xj, xk)i/P

This bound will now be applied to the channel of Fig. i. As before, let

__ I __ixiSZ]p(ylx) = _-I l exp [- _ (Yi
_ --

tel

(54)

let p(x) be chosen as

ex [ 1
iel _ --2

(55)

and let the input power constraint be given by

2 =ST
1

i_I

(565

[This form for p(x) has been chosen primarily for mathematical expediency. However, results

obtained by Gallager 75 indicate that it is indeed a meaningful choice from the standpoint of maxi-

mizing the resulting exponent.] Substituting Eqs.(555 and (56) in Eq.(535 yields, after the inte-

grals are evaluated,

where

z _ (oz ..... _jz _z ), ° .., , . . .
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?
For fixed R

and T, maximization of Eo( p)-pR over p,K, and the set I gives the desired

bound. [In the maximization over p it is assumed that RT >> In 4. This allows the factor of 4p

in Eq. (53) to be neglected in performing the maximization and involves no loss of generality

since RT = inM and large values of M are of interest.] Comparison of Eqs.(53) and (57) with

Eq.(30) reveals a strong similarity in the analytical expressions for the two bounds. As a result,

the maximization procedure used previously can be applied without change to this problem, yield-

ing the final result

Pe < 4p exp[-TET(P)] p _/i (58)

where

e A S
ET( p : _-BT(2P -l)

R(p

N
k. BT(2 p -- i)

A l-J-- Y_ In t S
= 2T /J BT(2P --I) 4 p

i=l

1 A

BT(. =

N
ST + E k.-l

[t +(.)] i=l z
N

and N satisfies

k N > BT(2 p --t) _XN+ 1

As before, a bound that is more readily evaluated can be derived by considering Eq. (58) for

T _ _. The result, which is proved in Appendix B, is

P < 4p exp[--TEe(p)] p >/i (59)
e

where

S
Ee(p)_A 4B(2p -- t)

_W IH(f)l 2R(p)=A In N(f) B(2p -- t) dr- $4 B(2pp--t)

S N(f)

l A 211+(.)] + fw iH(f) r2

B(-) = w

-- df

2
WA{+f: IH(f) l

-- N(f) >_B(Zp -- t)}

Figure 7 presents the pertinent characteristics of this bound and relates it to the previous

random coding bound. Note from Eq.(59) that B(2p -- t) and W can be interpreted in terms of

the water-pouring picture of Fig. 5(b) by simply replacing S/[2(t 4_ p)], where 0 .< p .< t with

S/4p, where p >/ i.

This completes the derivation of the error bounds for the channel of Fig. t. There remains

the problem of investigating the accuracy of these results since there is no assurance that they
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Fig. 7. Error exponent for channel in Fig. 1.
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Fig. 8. Comparison of error exponents.
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will be sufficiently accurate to be usefulfl As noted in Sec. III-B, the only practical approach to

this problem is to specialize the bounds obtained here to the case considered by Shannon 53 and

then compare the two results. This is most readily accomplished by considering the present

bounds in the form of Eqs. (34) to (36) and Eq. (58) for the case

t [ = t, 2 ..... 2T (T an integer)Xi = 0 i > 2T

When evaluated these become

zlo) : )2 + + c

S E(p) nats/second 0 .< p ..< 1
R(p) = ln[t + 2(t +p--_--)] p

S
E(R) = ln[i + _-] -R 0.< R...< R c

and

S S t
Ee(p) = _- [i + _]-

_p
p>_t

S Ee(p) nats/second p >/t
R(p) = In[1 + _-p] P

and are plotted in Fig. 8 for S/2 : 256. The corresponding bounds of Shannon are also plotted in

Fig. 8 and have been obtained by observing that the relation between the present notation and that

of Shannon is

2T:n

S/2 = A 2

R=2R
s

It should be noted that

weaker for rates near

bound exponent over a

In order to obtain

it is of interest to evaluate the bounds for the channel defined by

I

H(f) - I + jf

N(f) = l

Substitution of these expressions into Eqs. (37) to (39) and Eq. (59) gives

E(p) : (]_+p)2 z-S {t + [ 4(t3S+ P) ] 2/3}-t

3Sp)]1/3 3Sp)]I/3) E(p) nats/second{[4(t + --tan-l[4(i + pR(p) 2

3s t/3 3s t/<
= 2 [(-g-) -tan-l(-g -) ! -E(R) R

the new bound is tighter than Shannon's for low rates although somewhat

capacity. Furthermore, the new bound is quite close to Shannon's lower

range of rates around R c that are of considerable practical interest.

additional insight into the form of the error bounds for different channels,

Rc_<R_<C

o...< p ..< t

O_ R< R c

t See Sec. III-B for a discussion of this problem and of the procedure normally used to investigate such bounds.
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and

s It + 3s)z/3-t
Ee(p) = _- (_p ] p >/l

.(3S)I/3 (3S)l Ee(p) nats/second
R(p) = 2 [ _p _tan-I _ /3]_ P

Figure 9 presents these bounds for S = I03. It is interesting to note that the only basic dif-

ference between the curves in Figs. 8 and 9 is that the ratio Rc/C is significantly smaller for the

latter curve.
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A fact of considerable practical importance can be determined from the above examples.

At present, the highest rate at which practical coding devices can operate is Rcomp (Ref. 82) -

the rate axis intercept of the straight-line portion of the unexpurgated random coding bound._

For "noisy" channels [see Eq.(43)], Rcomp is readily found to be C/2; a somewhat disappointing

result in view of a natural desire to signal at rates approaching C. However, Figs. 8 and 9

demonstrate that the situation is quite different for moderately large signal powers. For the

band-limited channel, R is essentially I bit/second less than capacity for all S _> t02, and
comp

Rcomp/Cin fact _ I for S _ _. For the single-pole channel, it is readily shown that Rcomp

0.8C for S _ _ with this relation being quite accurate for S _> t0 3. Thus, at high signal powers

it is possible to achieve data rates quite close to capacity using existing coding and decoding

techniques.

In concluding this section, one final point should be made concerning the error bounds. As

indicated above, practical coding devices operate at rates less than Rcomp. However, the use

of such devices would normally imply a desire to use the channel as efficiently as possible, i.e.,

to use a rate near R . Thus, the fact that the unexpurgated random coding bound applies
comp

for all rates above R c -- (S/8) B(1) coupled with the fact that Rcomp > R c implies that there would

seldom be any practical interest in the expurgated bound. Furthermore, it is clear from Fig. 7

that R and C are the crucial factors in determining the unexpurgated bound, $ in other words,
C

given R c and C, an exponent that is sufficiently accurate for engineering purposes can be ob-

tained graphically by simply using a French curve to draw the exponent between R c and C.

t Note from Eqs. (38) and (39) that for any channel and for any signal power S, R (S) = C(S/2), ;. e., the

expression for Rcomp is identicai to that for C with S replaced by S/2. comp

$ This, of course, assumes that C ;s known as a function of S so that Rcomp can be determined from the relation

Rcomp(S) = C(S/2).
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F. OPTIMUM SIGNAL DESIGN IMPLICATIONS OF CODING BOUNDS

This section is concerned with presenting an answer to the third question of Sec. I-E; namely,

how should the signals that are to be transmitted through the channel of Fig. i be constructed so

as to minimize probability of error. The need for such an answer is made clear when the wide

variety of techniques (such as AM/DSB, AM/VSB, PM, differential PM, FM, etc.) presently

used for telephone line data transmission are considered.

Initially, it might appear somewhat surprising to expect any information concerning signal

design from the error bounds derived above. For example, the derivation of error bounds for

the white Gaussian channel 51'53 provides no insight into "good" signaling waveforms and in fact

it makes no difference -- the signals are simply linear combinations of any set of orthonormal

functions, t However, for the channel of Fig. i, the previous analysis shows that "good" signals

are finite linear combinations of a particular set of orthonormal functions, namely, those of

Theorems I to 3. Furthermore, the use of any other set of orthonormal functions would, in

general, lead to "good" signals that were infinite linear combinations of these functions. Thus,

in this case, the error bounds do indeed provide significant insight into how "good" signals

should be constructed.

To obtain an understanding of how the error bounds provide an answer to the signal design

question, it is necessary to reconsider briefly the original formulation of the problem. As in-

dicated in Sec. I-E, it was desired to formulate the problem of digital communication over fixed

time-continuous channels with memory in such a way that the subsequent analysis would lead to

a bound on the best possible performance. Thus, no practical restrictions were introduced with

respect to the form of the signals; it was simply stated that the channel would be used once for

T seconds to transmit a signal of T seconds duration. Since T was completely arbitrary, this

appeared to be the most general statement possible.$ Following this formulation of the problem,

basis functions were found for use in the vector space representation of the signals. Since the

basis functions were shown to be complete, this representation introduced no restrictions on

the form of possible "good" signals. Next, the vector space signal representation was used with

the random coding technique to obtain an upper bound to probability of error for a random en-

semble of codes. As noted in Sec. III-A, this derivation initially restricted the signals to be

d-dimensional where d was finite but could be taken to be arbitrarily large. However, the re-

sult of optimizing the random coding bound over the structure of the ensemble of codes showed

that only a lesser number N of the input signal coordinates should be used. [See Eq. (31) and

the preceding maximization over __.] Thus, allowing d to become infinite after the optimization

procedure removes the initial finite dimensionality restriction. This leads to the conclusion

that of all possible structures for a random ensemble of codes, the best is the one in which each

code word in the ensemble is a finite linear combination of the first N eigenfunctions. Further-

more, this result demonstrates that "optimum" digital communication over the channel of Fig. I

involves use of the channel only once to transmit one of these signals.

t Clearly, practical considerations (e. g., a peak-power limitation) might make one set of functions more desirable
than another.

$ For example, this statement does not preclude the possibility that _good" signals might be linear combinations

of time translates of a relatively short and simple signal, it just does not assume this.
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In conclusion, two points should be made concerning this "optimum" signal structure.

(1) In retrospect, it is almost obvious that good signals should be of this

form. As noted before, the elgenvalues X i are effectively energy trans-
fer ratios. Furthermore, when the eigenvalues are ordered so that
Ii >_12 >_X3 >z.... it is known 64 that Xi _ 0 for i_ oo. Thus, since the
input signals have an energy constraint and since the channel noise is

Gaussian, it would intuitively seem most unwise to place a large amount
of signal energy on an eigenfunction that was severely "attenuated" in

passing through the filter. Clearly, the theoretical analysis confirms
this reasoning and in addition, provides an explicit method for deter-

mining the number of eigenfunctions N that should be used.

(2) Although the previous discussion has demonstrated the optimality of this

signal structure from a theoretical viewpoint, it is clear that from an
engineering standpoint it is not practical; i.e., the generation of a large
number of eigenfunctions lasting for days or weeks is simply not feasible.
Thus, it becomes important to investigate other more practical forms of
basis functions in an attempt to find signals that can be readily generated

in practice and are also nearly as "good" as the optimum signals. This

problem is considered in Chapter IV.

G. DIMENSIONALITY OF COMMUNICATION CHANNEL

The dimensionality of a channel is a concept of interest to communication engineers.

concept is frequently discussed in terms of the noiseless, band-limited channel defined by

]t [f[ _ w
H(f) I0 elsewhere

This

N(f) = 0

For this channel, the dimensionality is usually considered to be the number of linearly independ-

ent signals that can be transmitted in T seconds and recovered without mutual interference. By

an argument based on the sampling representation for band-limited signals it is concluded that

the channeldimensionality is 2TW, since use of (sint)/t signals allows transmission and recov-

ery of 2W independent signals per second. There are, however, several fundamental criticisms

of this approach.

(t) Since (sint)/t signals are not time-limited, the statement that 2TW sig-
nals can be transmitted in T seconds involves an (arbitrary) approxi-

mation.

(2) It is not clear how this approach should be used to define the dimension-

ality of a band-limited but nonrectangular channel or of a non-band-
limited channel. For example, if H(f) = [t + jw] -t, how is W to be

defined? Conversely, if the channel is band-limited but nonrectangular,

its impulse response is, in general,

h(t) = _ h i

i

sin Tr(2TW -- i)
_( 2TW -- i)

(3)

Thus, transmission of(sint)/t signals leads to received signals having
mutual (or intersymbol) interference.

In view of Theorem t, an alternate and considerably more general defini-
tion of channel dimensionality is simply the number of orthonormal sig-
nals of T seconds duration that can be obtained which remain orthogonal
over some interval at the channel output. This definition is more appeal-

ing, since it applies to any channel and since the intersymbol interference
is zero between all output signals, ttowever, it was shown in Theorem t
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that the set of _i(t) having this property are complete ? and therefore

infinite in number. Thus, in contrast to the finite dimensionality of the
original approach, this definition indicates that all channels are infinite

dimensional. Clearly, this represents no improvement over the pre-
vious definition.

Before presenting a definition of dimensionality that overcomes these problems, it is im-

portant to consider in greater detail the infinite dimensional result just obtained. As indicated

previously, the eigenvalues X i corresponding to each _i(t), are the energy "transfer ratio" of

the filter for that eigenfunction, i.e.,

(h@i'h_i)Tl foTl If? _i(y) h(t -- r) dr] 2 at

Xi = (_i' _i ) = fT _?(t) dt

Furthermore, when the Xi are ordered so that Xt >/X2 >_ X3 >_ .... it is known 64 that Xi _ 0 for

i _ oo. Assuming normalized ,i(t), this implies that when _i(t) is transmitted the output signal

energy approaches zero for large "i." Thus, since any physical situation involves measurement

inaccuracies (noise), it is intuitively clear that the useful dimensionality of a channel is indeed

finite, i.e., all the _i(t) whose eigenvalues are "too small" are unimportant in determining the

channel dimensionality.

From this discussion it is clear that a useful definition of the dimensionality of a communi-

cation channel must include a meaningful definition of "too small." The following definition of

dimensionality which is based on the optimum signal results of Sec. III-F satisfies this

requirement.

Let {xj(t)}be a set of signals for use with the channel of Fig. i and let the

{xj(t)}be selected in the optimum manner of Sec. III-F, i.e., each xj(t) is
of the form

N

xj(t) = L xijq°i (t) 0,,< t,.< T

i=t

where N is determined by Eq.(31). Then the dimensionality D of the
channel is defined as*

T_oo p=O

Note that this is effectively a "dimensionality per second" definition as opposed to the "dimen-

sionality per T seconds" definition considered previously. This normalized definition is used

so that a finite number will be obtained for the dimensionality in the limit T _ oo.

In concluding this section, several points concerning this definition should be mentioned.

(t) From Appendix B it follows that D = 2W, where W is defined by Eq. (39)

and the water pouring interpretation of Fig. 5(b).

t AIthough the completeness proof for Theorem 1 does not apply to the rectangular band-limited channel

(oof-_oo I h(t) I dt = oo) it is possible to show that the _i(t) are also complete for this case.

:_ Recall that N is the dimenslonality (Sec. II-C) of the set of transmitted signals and that for T _ ooand p _ O,
R _ C. Thus, the channel dlmensionality is defined as the limiting (normalized) dlmenslonality of the set of

signals that achieve a rate arbitrarily close to capacity.
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(2)

(3)

(4)

(5)

The presence of noise is considered simply and directly in the evaluation
of W and thus of D.

It is satisfying to note that application of this definition to the band-

limited channel defined by

H(f) = I t Ifl 4 w
0 elsewhere

N(f) = N > 0
o

gives D = 2W.

This definition applies to any channel whether or not it is band-limited
and flat.

Calculations indicate that N _TD = 2TW [where N is defined by Eq.(3t)

and W is defined as in (l)] when T is only moderately large. For ex-

ample, Slepian 73 has shown that, for the band-limited channel defined

in (3), the error in this relation (N -- 2TW) is not greater than unity for

2TW > 2. Furthermore, at the other extreme calculations by the author
for the channel

H(f) = (I + jf)-l

N(f) = N
o

S/2N = 10 2
o

have shown that for T > t second the error is again not greater than

unity. Thus, this definition of dimensionality, although defined as a

limit for T _ oo gives meaningful information for practical values
of T.
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CHAPTER IV

STUDY OF SUBOPTIMUM MODULATION TECHNIQUES

It has been shown that "optimum" digital communication over the channel of Fig. I involves

use of the channel once for T seconds to transmit one of M signals• It has been demonstrated

that "good" signals should be constructed as finite linear combinations of the first N eigenfunc-

tions, i.e., each xj(t) is of the form

N

xj(t) = _ xij_i(t ) 0 _ t ..<T (60)

i=l

and that the optimum detector makes a decision based on the N numbers Yi' wheret

Yi = (y' ei)_o (61)

It should be recalled, however, that there has been no claim that this approach is in any sense

practical. In fact, since T might be on the order of hours, days, or weeks and since the gener-

ation of a large number of different functions [the {¢i(t)} ] of this duration is not feasible, it is

clear that it is not. The purpose of this section is to investigate some "suitable substitutes for

the {¢i(t)} and to compare the resulting error exponents to that obtained when the {(Pi(t)} are used.

In this manner it will be possible to make an engineering evaluation of the trade-off between

equipment complexity and performance.

In the "optimum" approach to digital communication over the channel of Fig. i there are two

basic operations:

The selection and generation of the transmitted signal xj(t);

The receiver decision based on the channel output y(t).

However, when considering an implementation of this approach it is convenient to break the

problem into two different classifications, commonly called coding and modulation. "8i

Under modulation is included the problem of generating the

{¢_(t)}, or suitable substitutes, and the problem of determining

th_ Yi of Eq. (6i).

Under coding is included the problem of selecting the coefficients

xij and the problem of making a decision based on the numbers Yi"

Although this breakdown is convenient and widely used in practice, it must be emphasized that

the basic operations are the two indicated previously. Thus, in the design of an efficient com-

munication system, coding and modulation must be considered together and possible trade-offs

between the two evaluated. In practice, this might be accomplished by evaluating the cost and

performance of various combinations of several coding and modulation techniques.

In view of the existence of several practical coding techniques 82-84 and the lack of signifi-

cant previous studies of modulation for the channel of Fig. t, the remainder of this report is

t For simplicity of presentation, the followlng discussion assumes white noise and an infinite observation interval.

However, unless otherwise indicated, the discussion is valid, with obvious modifications, for any noise spectrum

and any observation interval by simply introducing the appropriate {_i(t)} and inner product for Yl from Theorems
1 to3.
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concerned with a theoretical investigation of several modulation techniques and an experimental

investigation of one that appears quite promising for the telephone channel.

A basic problem in designing a modulation system is the determination of "suitable substi-

tutes" for the {_i(t)} of Eq.(60); it simply is not practical to think of constructing a large number

of signals that may last for hours, days, or weeks. Thus, in practice it is necessary to replace

the {<Pi(t)} by a set of functions that are time translates of a small set of relatively simple signals.

_rhen this is done the phenomena called intersymbol interference appears due to the time-

dispersive nature of the channel. As a result, the modulation problem reduces to a study of

various techniques for overcoming intersymbol interference. The following sections consider

several such techniques•

A. SIGNAL DESIGN TO ELIMINATE INTERSYMBOL INTERFERENCE

This section considers the possibility of substituting for the {_Pi(t)} a set of time translates

of a single, time-limited signal that has been designed to eliminate intersymbol interference.

Although this problem can be formulated and a formal solution presented for an arbitrary ob-

servation interval, it is practical to obtain numerical results only for the infinite interval. In

view of this and the fact that the resulting analysis is greatly simplified, an infinite observation

interval (T 1 = _) is assumed at the outset. For simplicity, it is also assumed that the noise is

white; the generalization to colored noise is presented in Appendix F.

Consider the situation in which a time-limited signal x(t) of .'J- seconds duration is transmitted

through the channel of Fig. i._ Assume that the channel is followed by a matched filter whose

output is sampled at t = kJ-, k = 0,+t,+2, .... Then by designing x(t) so that the matched

filter output is zero for all sampling instants except t = 0, it will be possible to transmit a

sequence of time translates (by k_- seconds) of x(t) without incurring intersymbol interference.

It is not clear, however, that this approach will lead to performance that is acceptable relative

to the optimum performance found previously. This question can be investigated by considering

first the problem of choosing a fixed energy x(t) to eliminate intersymbol interference and in

addition give maximum energy at the channel output. It will then be possible to compare the

error exponent for the best possible performance of this suboptimum technique with the optimum

exponent found previously.

The problem of choosing x(t) to satisfy the conditions indicated above can be solved using
• _. 64 85

standard techniques of the calculus of varlauons. ' From Fig. t and the definition of a matched

filter it follows that when x(t) is transmitted, the matched filter output for t - k'tf is

x(_) h(t-- or) dcr x(p) h(t-- k_- --p) dp dt
_oo

= _o _o x(a) x(P) Rh(O-kff-P) dodp

where

Rh(T) _ h(t) h(t - T) dt
ao

t For thls problem, _f w;ll be on the order of the rec;procal of the channel bandw¿dth.
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and that the energy of x(t) at the channel output is simply the matched filter output for k = O.

Finally, the energy of x(t) is given by

S x2(t) dt

Thus, by means of Lagrange multipliers, the constrained maximization problem requires

maximization of the functional.

_/ Y_ Rh((_ dp N
I = y_ -xxZ(_) + x(a) x(p) -p) + _, 2fl k

U

k=t

_ Rh((7- P 1× f'_o x(a) x(p) -k_) dp da
(62)

where the intersymbol interference constraints have been applied only to sampling times greater

than zero since the output of a matched filter is an even function of time about t = 0. The number

of successive sampling times N to which the constraints are applied is arbitrary at this point.

The maximization of I is accomplished in the usual manner by substituting x(t) = 7(t) + _f(t),

where 7(t) is the desired solution, and setting

dI[ =0
d_ c= 0

Appendix C shows that this implies

3-

;tT(t) = 30 T(T) K(t--r) dr 0..<t4
(63)

where

N

K(t-- s) _ Rh(t- s) + _ flk[Rh{t- s + k_ _) + Rh(t- s - kF)]

k=t

Since K(t - s) is symmetric and _2,_ it is known 64 that a solution to this equation exists. How-

ever, to the author's knowledge, there are no results in the theory of integral equations which

insure that the {/3k} canhe selected to satisfy theintersymbol interference constraints. Under

the restriction that h(t) is the impulse response of a lumped parameter system, this difficulty

can be overcome by transforming Eq. (63) into a differential equation with boundary conditions.

(See Tricomi 65 for a discussion of the relation between boundary value differential equations and

integral equations.) The boundary conditions will be determined first by investigating the prop-

erties that any signal must have to give zero intersymbol interference at the matched filter

output.

t When all the _k are finite, this follows directly from Appendix A.

59



By definition, the impulse response of alumped parameter system can be written as

I n _sit

aie t >/0

h(t) = i=1

0 t < 0 (64)

where a. ands. are, in general, complex constants satisfying certain conditions which insure
1 1

that h(t) is real. Thus, for t > 3-, the response r(t) to an input x(t) that is nonzero only on the

interval [0, 7] is

_f n -s .tK_

r(t) = \ x(g) h(t - _) dg= 2 aiX(-s i) e 1
_o

i=t

where

S.O"

X(_si )__A _o x(e) e 1
dff

Similarly the matched filter output, say z(t), for t >/_f is given by

z(t) : r(cr) r(t + g) d(_

n -sit _o_ 1

-S.(Y

2 aiX(--s i) e r(cr) e

i=l

d(T

n
-s .t

aiXiH(si ) e

i=t

where

H(s) A= h(t) e -st dt

and

Xi A__X(si ) X(_si )

Now, assume that intersymbol interference is zero for n successive sampling instants, i.e.,

z(k_f) = 0 for k = I, Z..... n._ Then the {Xi} must satisfy the n homogeneous equations

n -s.k.'f

2 aiXiH(s i) e

i=t

:0 k= t,2 .... ,n

1" In order that the error exponent may be evaluated for these signals it is necessary that intersymbol interference

be zero for all sampling instants, i.e., that N = oo in Eq. (62). However, the results of the following derivation

are independent of N, provided N _n, and as demonstrated later, lead to signals giving zero intersymbol inter-

ference at all sampling instants. Thus, for convenience, N = n is assumed at this point.
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However, these equations can be satisfied by nonzero X i if, and only if, the determinant of the

coefficients of the {Xi} vanishes. By forming this determinant and factoring out common terms,

it reduces to

l I l

-si_ -SkY -SnY
e e e

-SkY n-l -SnY)n-l(e ) ' ' " (e

This is a Vandermonde determinant and is known 86 to be equal to

n -s.Y

YI (e l

i=l

k=l.., i-I

Thus, the determinant will be zero if, and only if, for some i _ k

2_£
s i= s k+j-_- (65)

where

j = 4n-_

f = 0,±I,±2, . . .

However, this relation between the poles of H(s) will not exist in general.$ Thus, the {Xi} must

be identically zero if there is to be zero intersymbol interference at the matched filter output.

Since X i = X(s i) X(-si) , it follows that for each i = l, 2 ..... n either X(s i) = 0 or X(-s i) : 0. [The

condition X(s i) = 0 and X(-s i) = 0 is not included in the following discussion since it is a sufficient

but not necessary condition for obtaining zero intersymbol interference.] Although not obvious,

this restriction on x(t) is precisely what is required to obtain a solution to Eq. (63).

Recall that x(t) is defined to be nonzero only on the interval [0, Y]. Therefore, X(s) is an

entire function which, from the above arguments, has zeros at either s i or--si, i = l, . .., n.

Gerst and Diamond 87 have shown that a Laplace transform with these properties can be written

as

X(s) = Q(s) V(s) (66)

t The remainder of this discussion ignores the special cases in which Eq. (65) is satisfied since these are of limited

practical interest.
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where

n

Q(s) _ [_ (s- z i) (67)

i=t

and z i = s i or--s i according to whether X(s i) = 0 or X(-s i) = O, respectively. V(s) is the Laplace

transform of a pulse v(t) that has a continuous (n - i) st derivative and satisfies the boundary

conditions

v(0) = v(_) : 0

where

v(n-1)(0) = v(n-i)(_) = 0 (68)

v(i)(t) ZX dlv.

dt 1

Thus, the result is obtained that any solution to Eq. (63) which satisfies the intersymbol inter-

ference constraints must be of the form

7(t) = Qt{p) v(t)

where

Qt(p) ___&Q(s)
s=p=d/dt

and v(t) satisfies the integral equation

t_

XQt(p) v(t) = )o [Qcr(P) v(_)] K(t - or) dcr 0 ..<t..< _f (69)

as well as the boundary conditions of Eq,(68). This result provides the boundary conditions

required to obtain a solution to Eq. (63). The corresponding differential equation will be derived

next.

Observe that the operator Q (p) under the integral sign in Eq. (69) involves differentiation

with respect to or. Thus, as shown in Appendix D, integration by parts yields, after substituting

the boundary conditions of Eq. (68), _

kQt(p) v(t) = fo v((_) [Q((-p) K(t-(_)] de (70)

or

XQt(p) v(t)= Qt(p) fo v((;) K(t- (_) da

t The fact that K(t- e) is a linear combination of translates of a lumped parameter autocorrelat|on function

implles that K(t) has derivatives of all orders when impulses and their derivatives are allowed.

(71)
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wherethelast stepfollowsfrom thefact that

di di---=-K(t- cr)= (--i)i ----=K(t-- (r)

dt I d_ I

Next, observe from Eqs.(64) and (67) that the definition of Q(s) implies that

__ - N(s z)H(s) H(-s) ZX N(s 2) c

D(s 2) Q(s) Q(-s)

where N(s 2) and D(s 2) are polynomials in s 2 and c is a constant.

operator Qt(-p) to both sides of Eq. (7t) gives

Thus, applying the differential

Y

XD(p 2) v(t) = D(p 2) _o v(a) K(t-a) d_
(72)

where

D(p2) =A D(s2) I s:p=d/dt

Since, by definition,

K(t- _) = _ N(s2) exp[s(t-e)]
__ D(s z) n flk (esky ]

t + 2 + e-SkY)

k=l

df s = j2_f

Eq. (7Z) implies that

_: _ N(s 2)
XD(p 2) v(t) = D(p 2) v(a) exp[s(t-cr)]

-_ D(s 2) n

_ , sky
+ L Pkle + e

k=t

y _oo i n

= So v(a)I_ N(sZ) exp[s(t--(T)] [t + 2
k=t

f! n
= N(pZ, _o V(a) y_ exp[s(t -- o"] Ll + 2

k=t

df da

flk(esky + e-Skg)]

df da

dfd(r

= N(p 2) So y

= N(p z) v(t)

v(a) 6(t -- or) + 2 flk [5(t - + kY) + 6(t -- - kY)] d(r

k=t

O<t<Y (73)

This differential equation together with the boundary conditions of Eq. (68) and the relation

y(t) = Qt(p) v(t) (74)

defines the solution to Eq.(63) which satisfies the intersymbol interference constraints. However,

since this is a boundary value instead of an initial value differential equation, there is no assur-

anee from the previous work that a solution exists.88 Brauer 89 recently studied this problem and
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foundthatthereexistsa countablyinfinitediscreteset of eigenvalues{ki} for whichthereare
correspondingeigenfunetions{vi(t)} thatsatisfyboththedifferentialequationandtheboundary
conditions.Thus,asolutionto the integralequationof Eq.(63)whichsatisfiestheintersymbol
interferenceconstraintsexistsandsatisfiesEqs.(68),(73),and(74).

Beforeproceedingwithaninvestigationof thepropertiesofthe{vi(t)} andthecorresponding
(Ti(t)}, twopointsshouldbenoted. First, observethattheonlypropertyof thepolynomialQ(s)
usedin derivingEq.(73)from Eq.(7t) was

Q(s)Q(-s) =cD(s2) (75)

Therefore,it is possibleto arbitrarily chooseeitherzi = s i or z i - -s i, for i = t ..... nin Eq.(67)

without changing the fact that resulting {Ti(t) } are solutions of Eq. (63). Thus, there are 2 n pos-

sible choices for Q(s) each of which leads to an equally valid solution to the original maximization

problem. Second, observe that Brauer's result states that there are an infinite number of solu-

tions to Eqs.(68) and (73). Thus, the question arises as to which of these solutions is the one

that yields maximum output signal energy. It is shown below that if the eigenvalues are ordered

so that X I >/X 2 >_X 3 >/ .... then 71(t) = Qt(p) vt(t) is the desired optimum signal.

The fact that the {vi(t)} satisfy Eqs. (68) and (73) leads to several interesting and useful

properties of the corresponding channel input signals {Ti(t)). One property of the {Yi(t)} is that

they are orthogonal and may be assumed normalized. To verify this, let the following notation

be adopted.

ff

(f' g)_ _ "Jo\ f(t) g(t) dt (76)

and

Pf(t) ZX p(p) f(t)

where P(p) = P(s) ] s=p=d/dt and P(s) is a polynomial. Then it follows that

(Y i, Yj)_- = (Qv i, Qvj)_

Upon integrating by parts and substituting the boundary conditions of Eq. (68) this becomes _

(7 i, 7j)_ = (v i, Q-Qvj) = c(vi, DVj) (77)

where

Q-(s) _ Q(-s)

and the last step follows from Eq. (75). Now, from Eq. (73) it is found that

Xi(vj, Dvi) _ = (vj, Nvi)_f (78)

and also that

Xj(vi, Dvj)._f = (vi, Nvj)_f (79)

However, integration by parts and substitution of the boundary conditions of Eq.(68) shows that$

t See Appendix D for the details of a similar integration by parts.

$ Operators satisfying the following relations are said to be self-adjoint.
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(vj, Dvi) _- -- (v i, Dvj)_

and

(vj, Nvi) _- = (vi, Nvj)g

Thus, it follows from Eqs. (78) and (79) that

(Xj-X i) (vi, Dvj)g : 0 (80)

and therefore that (vi, Dvj)_f = 0 if (Xj - Xi) @ 0. From Eq. (77) it then follows that all 3,i(t) eor-

responding to nondegenerate vi(t) are orthogonal._ Finally, since Eq. (73) is linear, it follows

that the {7i(t) } may be normalized; a convenient normalization, which is assumed throughout the

remainder of this work, redefines the {7i(t) } as

N_c Ti(t) = Qt(p) vi(t) (8t)

and assumes that

(_i' "Fi)_ = 1 (82.)

A second property of the {Yi(t)} is that they are "doubly orthogonal" after passing through

the channel filter in the sense that if rij(t) is the filter output when ,/i(t - jg) is transmitted then

= I )ti if i = k and j =
(rij, rk_)_

I0 otherwise (83)

In other words, the {Ti(t) } are orthogonal at the filter output and in addition, nonequal time trans-

lates of any two of the functions are orthogonal at the filter output.i This result can be verified

by noting from Eqs. (76) and (8t) that

'SoYo(rij' rk_)_ = c [Q(7(p) vi((_) ] h(t-j_-(r) d_ [Qp(p) vk(P) ] h(t --_ -p) dpdt

 ;o;o= c [Qa(P) vi(a)l [Qp (p) vk(P)] Rh[a-P + (J-_)g] deal0

Integration by parts and substitution of the boundary conditions of Eq. (68) show that this becomes

g

(rij' rkf)_ = c vi(_) vk(P) {Qcr(-p) Qe(p)R h [e-p + (j -_)g]} dedp

or from Eq. (75),

(rij' rkJ)_ = c vi(a ) Vk(P) {D(pZ)Rh [or- P + (J - _)g l} dadp

t It can be shown that degenerate elgenfunctions are of a finite multiplicity and may be assumed to be
orthogona1.89

It should be observed that the orthogonality of time translates of the {l,i(t)} follows directly from the fact that
the {yi(t)} have been chosen to give zero intersymbol interference. In other words, the conditions of orthogo-

nallty at the channel filter output and zero intersymbol interference at the matched filter output are identical.

Thus, the {1,i(t)} give zero intersymbol interference at all sampllng instants.
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However, since

Rh((_- p) = £J_ N(s2) exp[s((_-p)] df
__o D(s 2)

s = j2_f

this implies that

(rij, rk_)_o =

= I 0(vi' NVk)_-

= I kj(vi'0 DVk)_)

( Fvi((_) Vk(P) D(p Z) N(s2)
__o D(s 2)

( : )vi(_) Vk(p) N(p z) exp{s[a--p + (j --D_f]} df

vi(ff) Vk(P) {N(p z) (5 [o--p + (j -_)_f]} dGdp

ifj - _

otherwise

ifj =_

otherwise

exp {s[cr -- p + .(j - _),_(]} df) d(_dp

dg dp

= I hi if i : k and j :

Io otherwise (84)

Thus, the (Ti(t) } are "doubly orthogonal"where the last two lines follow from Eqs. (79) to (8Z).

in the sense stated.

A third and extremely important property of the {7i{t) } is that the corresponding eigenvalues

{ki} are the ratio of the output to input signal energy, i.e.,

(rio, ri0)_

i (7i, 7i), _

This is readily verified by noting from Eqs. (77), (81), and (84) that

(rio, ri0)_ (v i, Nvi)_f
: - x. (85)

(7i, Ti)_ f (vi, Dvi)_f 1

Thus, with hi >_kZ >/X3 >_'' it follows that 7t(t) is the solution to the original maximization

problem.

A final property of the (Ti(t) } is obtained for the special case in which z i = -s i for all i in

Eq.(67). For this case it follows directly that

7i(t) = D+(p) vi(t)

where

H(s) A N+(s)

= D+(s)
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and thus that

ri0(t) = N+(p) vi(t)

Since N+(p) vi(t) is a linear combination of derivatives of vi(t), this demonstrates that ri0(t) is

time limited to [0, 9- ], i.e., the time-limited input 7i(t) yields an output ri0(t) that is again time

limitedto the same interval._ This special form of the solution to Eq.(63) has been studied by

Hancock and Schwarzlander 90 and is of practical interest due to the possible simplification of

matched filter construction for time-limited signals.

As an illustration of these results, consider the situation in which the channel filter is given

by

t
H(s) = I + s

Then

N(s2) _A H(s) H(-s) : i

D(s 2) i - s 2

and the boundary value differential equation becomes

or

O<t<g

where

Z t
w. - I

1 X.
i

and

vi(0) : vi(g) : 0

From this it follows readily that

a. sinw.t 0,.< t,.< _f
v.l+_,_,= 1 1

1
0 elsewhere

where

co. d iTr/_ i = t, 2,3 ....
1

From Eq.(67) and the discussion following Eq.(75), Q(s) is

Q(s) = 1 * s

t To the author's knowledge, this property of the solutions of Eq. (63) was first recognized by Richters. 91
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Thus, the eigenfunctions and eigenvalues are

Z.-i
Xi= [I + i ] i= 1,2 ....

and

7i(t) = [sinwit + w i cos wit ]

From this observe that

_o; Ti(t) Tj(t) at = [_2--J[4kikJlt/Z S_fo [sinwit sin w.t +w.w.j 1 j cosw.tl cosw.tj

+w sinwit coswjt] dt+ w i cos wit sinwjt j

However,

_ sinw.t sinw.t dt = l
"Jo t J o

cos wit cosc0jt dt = _ 6ij

and integration by parts shows that

coi _'° coswit sinwjt dt =-wj _'°
sinw.t cosw.t dt

1 j

Thus,

_o _f [4Xkkj] t/2 _ Z7i(t) yj(t) dt = |[_2--] _- [i + w i ] 6ij = 5ij

and the {Ti(t)} are orthonormal. Next, consider

rij(t) _ Ti((y -- j_') h(t -- _) da

Evaluation of the integral shows that

IZXilt/Z /
rij(t) = i[-_-]

0 t<JJ-

(t ± COl2) sinwi(t--jg) --wi(t _: t) {coswi(t--j5 _) -- exp [-- (t -- j_f)]}

j_-.<t-.<(j + t)_-

wi(t _:1) exp[--(t--j_f)] [(--t)i-t e If + t1 t >(j + t)_-

Observe from this that if the + sign is taken in the definition of Q(s), rij(t) has the simple form

t/Z I sinwi(t- j3-) J_-4 t4 (j + t)_
rij(t) = [ _] 0 elsewhere

t

In other words, the time-limited input signal 3,i(t - j _) yields an output that is again time limited

to the same interval. Furthermore, it follows almost trivially that

68



{riJ' rk_)_°"= I[ki if i =k andj =f
0 otherwise

i.e., for thisQ(s)the{Ti(t)} are "doublyorthogonal"at thefilter output._ Also, notethat since

the {?i(t)} are normalized, k i is the ratio of the output to input signal energy.

The previous work has derived the optimum time-limited signal that gives zero intersymbol

interference at the matched filter output. It is now of interest to compare the performance of

this modulation technique to that obtained when the optimum technique of Sec. III-F is used.

Recall that optimum signals are constructed as linear combinations of the first N eigenfunctions,

i.e., each signal is of the form

N

xj(t) = 2 xijq)i(t) 0 ..< t-.< T

i=t j= i ..... M

and that a study of suboptimum modulation techniques involves finding "suitable substitutes" for

the {_i(t)}. For the suboptimum modulation technique of this section, the {_0i(t) } are replaced

by time translates of the optimum signal 7t(t) , i.e., if {_0i'(t) } are the functions substituted for

the {q)i(t)} then$

_i,(t ) Zx 7t(t _ ig) 0 _< t ..< T

i = t, 2 ..... K (86)

and a general input signal is of the form

K

x(t) = _, xi_0i'(t) 0 -.< t _< T (87)

i=t

For this input, the corresponding channel output is

K

y(t) = 2 _1 xi@i'(t) + n(t) (88)

i=t

where

_T
zx _

ei'(t)
=-- Jo _0i'(r) h(t -- r) dr

and X 1 is the first eigenvalue of Eq. (73).

t = k_-, z(k_), is §

From this it follows that the matched filter output at

t Verification of this property for Q(s) = 1 - s is possible, but tedious and is omitted.

$ It is assumed here that _ and T are related by T = K_ where K is an integer. However, K = N is no._j assumed

since N is the optimum dimensionality of the {x.(t)} only when the {¢Pi(t)} are used.
I

§ For convenience it is assumed here that the matched filter is matched to Xl 1/2 times the channel filter output

when Yl (t) is transmitted. This, together with the assumed noise spectrum normalization (see Fig. 1) gives unity
noise variance at the matched filter output.
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y(t) Ot'(t- k_]-) dt: y(t) O£(t) dt: (y, @£)

K

: >2, _ ×i(ei', e,,<_ + (n, e,' L
i=t

= _ Xk + n k

where n k A= (n, Ok')_ and the last step follows from Eq.(84) by noting that

Furthermore,

_f_t Oi'(t) = rli(t).

(89)

njn k : n(o') n(p) 01_(o') Oj'(p) do'do

: 6(o"- p) Ol_(o-) ej'(p) do-dp

e .')_o = (9o): (0t_ ., j 6kj

Thus, by comparing Eqs.(89) and (90) to the vector representations of Theorems I to 3, it

follows that the value of C for this modulation technique, j say C', can be obtained from Eqs.(32)

and (35) by substituting

i . . . •

k I i:l, K

Xi:
0 otherwise

and performing a maximization over _f. [The prime has been used here to indicate that X_ is an

eigenvalue of Eq. (73).] The resulting expression is

t

C' : max_]. 2T- In [t + Xl([f) S9-] (91)

where the fact that X t is a function of the length of the interval over which 71(0 is defined has

been emphasized by writing X 1 = kl(_} ). It should be mentioned that the maximization over _f

is required since the value of 3- in Eq.(86) is arbitrary and therefore should be chosen to max-

imize C'.

From Eq. (9t) it is clear that a knowledge of the first eigenvalue of Eq. (73) is required as

a function of the interval length 9-. However, boundary value equations such as this are quite

tedious to solve for specific cases. Thus, since only the eigenvalue is of interest and not the

eigenfunction, it is desirable to investigate a means for determining the eigenvalue without

solving the differential equation. Such a result can be obtained by considering the Laplace

transform of the soh{ion to Eqs. (68) and (73) repeated below for convenience

_ n I

lRecall that a conclusion of Sec. III-E was that a knowledge of Rc and C as a function of signal power S pro-
vides sufficient information about the error bounds for engineering purposes. However, in a study of suboptimum

modulation systems which involves only a comparison (and not a numerical evaluation) of the error exponent for

various techniques, it is convenient to make a further simplification and to evaluate only C' as a function of S;

the tacit assumption being that if C' is close to C, then Rc is close to Rc and conversely, if C' differs greatly
from C then R' differs greatly from R .

C C
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[N(p 2) -kiD(PZ)] vi(t) : 0

vi(0) : vi(_) = 0

0 < t < 9_ (9Z)

v.(n-1)(0) : v.(n-l)(9 _) : 0 (93)
i i

Since no additional effort is required to obtain an expression which defines all the eigenvalues,

this will be done.

Recall that by assumption the {vi(t) } are zero outside the interval [0, _] and that the poly-

nomial D(s 2) is of order 2n. Assume that the order of N(s 2) is 2m and that m_ n. Finally,

observe that although the boundary conditions imply that all derivatives of vi(t) through the

(n- I) st
are zero at t : 0 and t : _-, it is possible that higher order derivatives of vi(t) will

involve impulses and their derivatives at these end points. In view of these conditions, Eqs. (92)

and (93) can be replaced by the equation

[N(p Z) --kiD(p2) ] vi(t) : Pit(P) 5(t) + Pzi(p) 5(t-- _-) --_o < t < _ (94)

where Pit(s) and Pzi(S) are polynomials of order (n -- t) or less whose coefficients will be deter-

mined later. Since Eq.(94) is satisfied for all t, the Laplace transform of both sides can be

taken. This yields

sff
Pli(sl + Pzi(S) e

V.(s) : (95)

i N(s Z) _ kiD(s Z)

where Vi(s) is the transform of v.(t) and the domain of convergence is the entire finite s-plane.i

It is shown in Appendix E that all nondegenerate solutions of Eqs. (921 and (93) are either even

or odd functions about t = J-/2. Thus, since an even or odd function has an even or odd trans-

form, it follows that for nondegenerate eigenfunctions

Pli(s ) e -s[_/2 + Pzi(S) e s_-/2 pli(_s) eSg-/2 + Pzi(--s) e -s[_/2
: ±

N(s Z) --XiD(s 2) N(s Z) -- XiD(s Z)

or

Pit(s) ± Pzi(-s) : ±[P1i(--s) ± Pzi(s)] e s_- (96)

Expansion of e s_" shows that the right-hand side of Eq. (96) is an infinite order polynomial while

the left-hand side is at most an (n- i)st order polynomial. Thus,

Pli(s) + Pzi(-s) = 0

and Eq. i95) becomes?

t Although the previous discussion has shown Eq. (97) to be true only for nondegenerate elgenfunctions, it is

possible by means of an argument identical to that used by Youla92 to show that it is true for all elgenfunctlons.
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Pli(s) ± Pti(-s) e sj
V.(s) : (97)

1 N(s 2) _ XiD(s 2)

Next, recall that Vi(s) must be an entire function since vi(t) is a pulse. Thus, the coefficients

in Pti(s) must be chosen so that the numerator of Eq. (97) contains all the zeros of the denominator.

If ±sit,±siz,...,±S.in are the gn roots of N(s Z) -XiD(s Z) = 0, this condition leads to the n

homogeneous equations

si_

Pti(si_) ± Pti(--si_) e = 0 _ = t ..... n (98)

Since

n

Pit (s) &= 2

j=l

Eq. (98) becomes

ail( t i wif) + ai2( 1 _ wi£) si £

where wiR Zx exp [si_ ].

+ ai3(t ± wil) sZ sn-1i_ + "' + ain [t ± (--t)n-lwi_] i_ = 0

= 1 ..... n (99)

Thus, a set of nonzero coefficients {ai_} exists if and only if

A

(1 4- wil)

(I 4- Wiz)

=

(t 4- Win)

(t _ wit) sit ... [t ± {-t) n-t wit] (sit)n-t

(t :F Win) Sin
[t ± (-1) n-t n-IWin] (Sin)

= o (1oo)

(t00) is the desired result which allows evaluation of the {Xi} without explicit solutionEquation

of the boundary value differential equation. [In addition, observe that this result and Eqs.(97)

and (99) provide a frequency domain solution for the {vi(t)}.]

The result will now be used to evaluate the performance of the suboptimum modulation tech-

nique of this section. A convenient class of channels to consider are those having Butterworth

filter characteristics, i.e., channels for which

t
H(s) H(-s) =

1 + (-1) n (s)Zn
27r

For this class of filters, the roots of N(s 2) -XiD(s2) = 0 can be expressed in the simple form

_ t]l/2n _- I 1)] _ t, ...,n: (27r)[X i exp[jTr(_-- ÷ =si_

Observe that if X. is written as
1
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t
h. =

1 (kni/2n
i + \_-/

where k . is a constant, then
m

k •
m . f -- t 1

sir = gTr -7 exp[jTr(--_--- + _)] £ = 1,...,n

and after factoring out common terms, Eq.(tO0) becomes

(t0i)

Zx

(i -_wit)

( t ± Win)

(t :Fwit) ..- [l ±(--i) n-t wil ]

(t:FWin) {exp[iTr(n-- t)/n]} -.- [t+(--t) n-I Win ] {exPIjTr(n--l)/n]} n--t

= 0

(t0z)

where now wif = exp{ZTrkni exp[jTr(_- t/n) + (t/Z)]}. Thus, for the Butterworth filters, & is in-

dependent of 3- when the {hi} are expressed as in Eq. (t0t).

Consider first the case for n = t. From Eq.(t02) it follows that kit must satisfy the relation

{1 + exp [jZ_rkti]} : 0 (t03)

However, as noted previously, A i is the energy transfer ratio of the filter when 7i(t) is trans-

mitted. Since the filter is normalized so that

max IH(f) l = t ,
f

it follows that k i < t. Thus, kit = 0 is not an allowed solution to Eq. (t03) and the final result is

kti = i/Z i = 1, Z, ...

or

1
k. - (104)

I + (i)2
/-3

which agrees with the result found on page 67 after the introduction of a bandwidth scale factor

of ZTr. Substitution of this expression into Eq. (9t) shows that

C' = max _ log z I + i Z bits/second

y I + (y_)

This expression is plotted in Fig. t0 along with the value of C = R(0). It should be noted that

this technique is inferior to the optimum technique by approximately 3 db for S/2 = t0 and by

nearly 7 db for S/2 = t03.

To investigate the performance for higher order channels, it is necessary to solve for kni

from Eq.(102). Since this becomes quite tedious manually for n > 2, the evaluation has been

accomplished numerically on a digital computer. The result is that to two significant figures

and (at least) for n ,,< t0, kni is given by
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kni = _- [ {n- t) + i] i = t,2 ....

Thus,

h i = i + 2_

-i

(lO5)

and Eq. (91) becomes

C' = max _ log 2{I + $5 _ [t + (n-----!l)Zn]-l} bits/second

Figure Ii presents C' for a Butterworth channel with n = 10 together with the value of C = R(0)

calculated from Eqs.(37) to (39). It should be noted that although C' -- C for S- 0, there is an

effective signal power loss of 25 db for S/2 = l03.

This extremely poor performance at only moderately large signal powers when coupled with

the lesser but still significant loss for the simple n = I channel suggests that this suboptimum

modulation technique is of limited practical interest. The following paragraph considers an

extension of the present technique that leads to significantly improved performance at the ex-

pense of an increase in equipment complexity.

Recall from Eqs. (80) and (84) that the {Ti(t)} are orthonormal and are "doubly orthogonal"

at the channel filter output. Because of these properties it is possible to substitute for the

{(Pi(t)} not just time translates of the single function %,l(t) but instead time translates of the

first few of the {'Yi(t)}. When this is done, _ can be increased and improved performance ob-

tained. More specifically, consider the following situation. Let _ be fixed, assume that

T = k_ with k an integer, let the {(Pi(t)} be replaced with time translates of the first N' of the

{7i(t)}, and let N' be chosen to maximize the error exponent. It then follows from the discussion

of Eq. (91) and Eqs. (32) and (35) that the value of C for this modulation technique, say C_, is

N'
k.

l i bits/second (I06)2 log 
i=l

where

t A

m !

S_ + 2 x. -t
1

i=i

B_(O) = N'

and

XN, > Bg(0) >_XN,+t

and the {hi} are eigenvalues of Eqs.(9Z) and (93). Equation (106) is plotted in Figs. t0 and 1t

for the n = t and n = t0 Butterworth channel, respectively, using the eigenvalues of Eq. (t05).

Observe from Fig. t0 that for the n = I channel and with 5_ = t, use the first twelve of the {_i(t)}

gives a modulation system whose performance is within t db of ideal at S/2 = 103. Figure 1t

demonstrates a similar improvement for the n = t0 channel except that for this channel both _-

and N' must be significantly greater than for the n = t channel to achieve the same level of

performance.
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In conclusion,twopointsshouldbemadeconcerningthis modulationtechnique.

(1) .Assuggestedin Fig.11, it is possiblebyusingincreasinglylarge
valuesof Y andN' to obtaina modulationsystemfor whichC3-is
arbitrarily closeto C. As apracticalmatter, it appearsthata
valueof _-betweenoneandtwentytimesthereciprocalof the
filter 3-dbbandwidthis sufficientto achievemostof the improve-
mentpossible.

(2) Sincethedeterminationofthe{Ti(t)} becomesincreasinglydifficult
for higherorderchannels,andsincea greaternumberof the{Ti(t)}
are requiredfor efficientoperationwith thesechannels,it is clear
thatthis modulationtechniquecanbeconsideredpracticalonlyfor
low-orderchannels.

B. RECEIVERFILTERDESIGNTO ELIMINATEINTERSYMBOLINTERFERENCE

Theprevioussectionhasconsideredasuboptimummodulationtechniquethateliminates
intersymbolinterferencebymeansof a suitablechoiceof thetransmittedsignal. Thissection
considersanalternateapproachin whichthereceivermatchedfilter is replacedby a filter that
hasbeendesignedto maximizeSNRandeliminateintersymbolinterference.I

Consider again the channel of Fig. i, let N(f) be arbitrary, and assume that a signal x(t) is

given. For this situation it is desired to design a receiver filter hi(t) so that when x(t) is trans-

mitted the filter output will be zero at t = k_-, k = +i .... ,+N, and nonzero at t = 0.3 In this

manner, it will be possible to transmit time translates (by k_(seconds) of x(t) without incurring

intersymbol interference. Since there are, in general, an infinite number of filters having this

property, it is desirable to choose the filter that maximizes the SNR at t = 0. This problem is

readily solved using standard techniques of the calculus of variations. 54'85 When x(t) is trans-

mitted, the signal portion of the output of hi(t), say z(t) is

ooz(t) = X(f) H(f) Hi{f) e j_ot df (107)
_oo

where X(f), H(f), and Hi(f} are the Fourier transforms of x(t), h(t), and hi(t), respectively.

Also, the noise output, say no(t), is

no(t} = n(a) ht(t- a) da

For this problem, a useful SNR definition is

Is l K lX(I') H(f) Hi(f) df X(f) H(f) Hi(f) df
-ooSNR = z2(0) - =

_ -- foolno(tl ] z f_ f_ n(cr) n(p) h(t a) h(t P) dodo N(f) Igt(f) l z df
-_o -oo -oo

(i08)

t To the author's knowledge, this problem was first considered by Tufts. 93 The work presented here represents an

alternate and somewhat simplified derivation of his result and in addition provides some insight into the SNR deg-

radation caused by the elimination of intersymbol interference.

$ The number N is arbitrary at this point. Appropriate values will be indicated later when specific examples

are considered.
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Thus, the problem is that of choosing Hl(f) to maximize Eq.(t08) under the constraints z(k_-) =

0, k = +I ..... ±N. Use of Lagrange multipliers shows that Hl(f) must be chosen to minimize

the functional j_

I = S N(f) IHt(f) l 2 - X(f) H(f) Hi(f) _ 2/3 k e jwk df
_oo

k= -N

This minimization is accomplished in the usual manner by substituting Hl(f) = Ho(f) + EH2(f) ,

where Ho(f) is the desired optimum filter, and setting

d_ _ :0

Upon performing the substitution it is found that

d_I = N(f) IHo(f) H[(f) + H*(f) Hz(f) ]-X(f) H(f) Hs(f) _ Z_k e jwk_

d( _=0 __o k

df (109)

However, since real-time functions are assumed and N(f) is a power spectral density,

F fN(f) Ho(f) H_(f) df = N(--f) Ho(-f) H_(--f) df = N(f) Ho(f) H2(f) df
_oo _oo _oo

Thus, Eq. (i09) can be written

dl = Z Hz(f) N(f) H ° (f) -X(f) H(f) _ _k eJC°k_

c=0 _oo k

df (II0)

Upon requiring that

-_I_¢=0= 0

for all H2(f) it follows that the bracketed quantity in the integrand of Eq. (Ii0) must be zero for

all f, i.e., Ho(f) must be given by

N

Ho (f) = X* (f)N(f)H*(f) >_ //k e-JCvk_ (III)

k=-N

It is interesting to note that Ho(f) can be realized as the cascade of the optimum detector for

colored noise followed by a "zero forcing" tapped delay line.

Next, it is necessary to solve for the {/_k} that satisfy the intersymbol interference con-

straints. From Eq. (i07) the output of h (t) at t = i_ is
o

t Observe that choosing H 1(f) to minimize [n 0)] 2 with z(0) fixed is equivalent to choosing H l(f) to maximize
Eq. (108). o _
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z(i_) = \ IX(f) H(f) IZ
N(f) 2 /3k exp[jw(i- k)_] df

_-oo

k

where

= 2 /3k Wik

k

A 1 IX(f) H(f)] z
Wik = ,,_oo N(f) exp[jw(i- k) fl'] df

Thus, if the column vectors z and // are defined as

• z(-- N_(

A A
z = _ z(0) _ = flo

z(N_)

(tt2)

and if a matrix [W] is defined as

"W_N, -N

[Wl =a W0_N

WN, -N

W-N, 0 "'' W-N,N

W0, 0 " " " W0, N

WN, O "'' WN, N

it follows that

__= [Wl __

Since [W] is known to be nonsingular, 93

[w] -_ _ = [Wl-_ Iw]__

the inverse matrix [W] -I

(it3)

exists and Eq. (t 13) becomes

or

/3 = [W] -t z (It4)

This is the desired expression that gives the tap gain settings // in terms of the constraint

equations t

1"Recall that in the maximization procedure z(O) was fixed but arbitrary.
on the SNR, the normalization z(O) = 1 has been assumed.

Since the value of z(O) has no effect
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z(k_-) = !t k=0

I 0 kT_0 (115)

Finally, it is necessary to evaluate the SNR for this filter. From Eqs.(108) and (t15) this is

__ N(f) exp [jco(i - k)3- ] df -1

or, from Eqs.(tt3) and (115)

SNR = flo t (1t6)

For comparison purposes, it should be recalled 54that the SNR at the output of the optimum

detector for colored noise and an infinite observation interval is

SNR o S _ IX(f) H(f) l 2= -_ N(f) df

that SNRIo = l,fl_I- will be the ratio of the SNR for theThus, if X(f) is assumed normalized SO
u

zero forcing filter to that for the optimum detector. Since this interpretation offlo is quite

useful, the following examples assume X(f) to be so normalized.

Ideally, the performance of this modulation technique would now be evaluated by comparing

the value of C for this approach with that obtained for the optimum technique. Unfortunately,

when X(f), H(f), and N(f) are chosen so that the determination of flo from Eq. (it4) is feasible,

it is impractical to determine C for the optimum technique. Conversely, when H(f) and N(f)

are chosen to simplify evaluation of C for the optimum technique, it is impractical to evaluate

flo from Eq.(tl4). Thus, it is necessary to consider an alternate and simpler evaluation of the

zero forcing technique. A relatively simple approach is to choose X(f), H(f), and N(f) so that
-t

flo can be readily determined from Eq. (tt4). Then since flo represents the SNR degradation

caused by the elimination of intersymbol interference, it seems reasonable to conclude that if

for a given situation flo is close to unity the performance of this technique would be acceptable.

Conversely, if a situation is found in which f121 is quite small, this technique would be

unacceptable.

Recall from Eq. (11t) that the zero forcing filter can be realized as the cascade of the op-

timum detector and a zero forcing tapped delay line. Viewed in this manner, it appears that

the zero forcing procedure should lead to an excessive SNR loss only if the intersymbol inter-

ference at the detector output is in some sense large. The following examples confirm this

speculation.

Let W(t) be the output of the optimum detector when x(t) is transmitted, i.e.,

W(t) = p,o\ IX(f) H(f) l 2 eJWt df
N(f)J_

and consider first the situation in which X(f), H(f), and N(f) are chosen so that W(t) appears as

in Fig. t2. Then the elements in the [W] matrix are

Wik =
t i=k
t/2 i = k + 1

0 otherwise
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W (t) 13-64-3 fo_

. 1.0

0.5

t

Fig. 12. Example in which intersyrnbol

interference is large.

Calculations for N = l, 2, 3 suggest that for this [W] the {_k} are given by

//k = (--l) Ik[ [N+ I--[kl] (117)

Substitution of Eq. (it7) into Eq. (It3) shows that

N

= _ I ]i- _1- I _[1 lil _<z(i_) : E /3kWik (-t) li] [lil _ _ [i + N

k=-N

[t if i = 0 lil _< N
I0 otherwise

which proves that Eq.(ll7) is valid for arbitrary N. Observe from Eq.(ll7) that I/_+N I = I.

Thus, the intersymbol interference between x(t) and x[t ± (N + l)J] is independent of N. As a

result, it would be necessary to set N = _o before zero intersymbol interference would be ob-

tained for all sampling instants. However, Eq.(ll7) shows that /3° -- N + i. Therefore, as

N_ oo, //o I _ 0, i.e., the SNR loss caused by the elimination of intersymbol interference be-

comes arbitrarily large as the intersymbol interference is eliminated for an arbitrarily large

number of sampling instants. Thus, for this example, zero forcing is completely unacceptable

as a technique for eliminating intersymbol interference.

Another example that gives some additional insight into the zero forcing filter is the following.

Let X(f), H(f), and N(f) be chosen so that W(t) appears as in Fig. t3. Then the elements of [W]

are

Wik

'i i=k

0 i=k+l

-i/4 i = k+2

,0 otherwise

For this [W] it is readily verified that the {_k } given by the following relations satisfy Eqs.(ll3)

and (i15).
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Fig. 13. Example in which intersymbol
interference is small.

w (t) 13-.-_,o, I

.0

I I_t

13k = #-k

13k = O, k odd

13N : I/D

iN_Z : 4/D

13N-4 = I5/D

13k = 4/3k+2 -- ilk+4

1

D is determined from the relation 13o - _ tZ : t.

_±i : _±3 : ;3±5 : 0

for k even and 0..< k_< N--4 (tt8)

Thus, if N : 6, for example, the {ilk} are

13o : 1t2/97, _±Z : 30/97, t± 4 : 8/97, 13±6 = t/97

Two important results can be obtained from Eq. (tt8). First, observe that 13+N = t/D. Although

no general expression for D has been found, calculations show that D grows rapidly with N._

Thus, for only moderately large N, the intersymbol interference between x(t) and x[t ± (N + l)_]

will be negligible. This implies that from a practical standpoint, zero intersyrnbol interference

can be obtained at all sampling instants by means of a finite length tapped delay line. This result,

which is of considerable practical importance, should be contrasted with the analogous result

in the previous example. Second, observe that/3o can be written as

l

S° : i nz

2 n o

1 For example, the followlng results can be determined from Eq. (118).

N: 2 4 6 8 10
D: 7 15 48.5 181 675.5
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where n o and n 2 are the numerators offl0 and/?2' respectively, i.e., flo : n0/D andfl2 : nz/D"

Use of this result together with the iterative relations of Eq.(ll8) shows that, to slide rule

accuracy,

flo -_ t.t5 for all N

Thus, the SNR loss due to the elimination of intersymbol interference is negligible and it may

be concluded that for this example zero forcing is a satisfactory technique for eliminating inter-

symbol interference.

In summary, it appears from the previous examples that zero forcing is a suitable technique

for eliminating intersymbol interference when the intersymbol interference at the optimum de-

tector output is "suitably small," i.e., when the output has a ringing form as suggested by Fig. 13.

Conversely, when the intersymbol interference is "large" as suggested by Fig. 12, the zero

forcing procedure causes an excessive loss in SNR.

C. SUBSTITUTION OF SINUSOIDS FOR EIGENFUNCTIONS

The previous sections have considered two approaches to the elimination of intersymbol

interference in suboptimum modulation systems. As indicated, the first of these approaches

appears practical for relatively simple channels {an n = t Butterworth filter and white noise)

while the second appears practical for "almost flat andband-hmlted channels, i.e., channels

for which the intersymbol interference at the optimum detector output is "relatively small."

This section considers a third technique that appears practical for the range of channels be-

tween these extremes.

Recall that a study of suboptimum modulation systems involves finding "suitable substitutes"

for the eigenfunctions of Theorems 1 to 3. The present section considers the possibility that

suitable substitutes are time translates of a set of sinusoids. The motivation for this approach

is provided in the following discussion.

1. Asymptotic Form of Eigenfunctions and Eigenvalues

This section is concerned with an investigation of the form of the {_i(t)} and {Xi} of Theo-

rems t to 3 for T_ _. Consider first the {el(t)} of Theorem t and recall that they satisfy the

integral equation

where

Xiq)i(t) = (Pi(s) K(t, s) ds 04t_ T (tt9)

02"

s) _ )o t h(a-- t) h{ff-- s) dff
K(t,

Since the interval over which the {_i(t)} are defined has no effect on the form of the {_i(t)}, it

is convenient to consider the following equation instead of Eq. (t t9)

T/2
Xi(_i(t) = -T/2 (pi(s) K(t, s) ds

It] _< T/2 (120)

where now
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with T' _ T t

and T l

T l -T/2K(t, s) _ h((7 - t) h(e -- s) de

-T/2

T'/2= h(e - t) h(a - s) d_

d-T,/2

-- T/2. The last equality follows from the fact that h(t) is physically realizable

>_-T is assumed. Now, let (_i(t) be represented by a Fourier series, i.e., let

JC°kt _ 2_k Itl ..< T/2
q_i (t) = 2 aik e C°k T

k = _oo

(121)

Substitution of this expression into Eq. (120) shows that

JWkt fT/2 j_k s

k i 2 aik e = 2 aik d_T/2 e
k k

K(t, s) ds

Multiplication of both sides by exp [-jwlt] and integration over I-T/2, T/2] gives

I _T/2 fT/2 jWk s -j_ft
Xiai_ = T- 2 aik -T/2 J-T/2 e K(t, s) e ds dt

k

(122)

or, from Eq. (t20)

t d-m'//2fZ'/2 IfZ/2[-Z/2 J_kS dsl IfZ/2[-Z/2 -J_ft 1Xiaif = T- 2 aik h(a-- s) e h((r--t) e dt de

k

Since the bracketed terms are simply the output of the filter h(t) when the input is of the form

exp[jwt], --T/2 < t < T/2, and since

fT/2 Jcokt -jwte e dt=T

0-T/2

it follows that

sin_(f-fk ) T

7r(f -- fk ) T
=& T sinc(f-- fk ) T

' 1Xkaif = _- 2 aik j_T,/2 T _o H(f) sinc(f -- fk ) T e jz=fe df
k

X T H(v) sinc(v + fR) T e j27rve d de
-oo

or

SSXiaLf = TT' 2 aik _0o __o H(f) H(v) sinc(v + fi) T sinc(f-f k) T sinc(f + v) T' dfdv
k

(t23)

Consider the integration over f and observe that unless u -_ -fk the integral is approximately

zero. Furthermore, if T' is assumed to be large enough so that H(f) is constant in both
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amplitude and phase over a band of frequencies several times I/T' cps wide about f = -v, it

follows that when v -_-fk, Eq.(123) can be written$

f fkiail = T _ aik IH(v)l 2 sinc(v + fl) T
oo oo

k

T' sinc(f- fk) T sinc(f + v) T' dfdv (124)

Since T' >_ T,

_ ' sinc(f-- fk ) T sinc(f + v) T' df = sinc(fk + v) T

and Eq. (124) becomes

fkiaiR = T Z aik IH(v)l Z sine(v + fR) T sinc(v + fk) T dv (iZ5)

k

If the additional assumption is now made that T is large enough so that IH(v) IZ is essentially

constant over a band of frequencies several times i/Tcps wide centered about v = -fu Eq. (125)

can be written

oo

XiaiR = _ aik [H(fR) IZ _ T sinc(v + fR) T sinc(v + fk) T dv
_oo

k

= air [H(fR)l2

where the last step follows from the known orthogonality of sinc functions. 94 From this it follows

that either X i = llI(fR)l2 or air = 0, i.e., both exp[j_Rt] and exp[-j_Rt] (or equivalently sinc0Rt and

coscuft) are eigenfunctions with eigenvalue ]H(f_)] 2. Thus, when T and T' are large enough to

satisfy the assumed conditions, the {(Pi(t)} and (Xi} of Theorem I are, to a good approximation,

given by $

Z_itW 2i_l(t) = sin
i=t,Z ....

ZTrit Itl _< T/2 (126)(pzi(t) = cos T

and

XZi = XZi_, = ]H(T) Iz

This is the desired asymptotic form for the eigenfunctions and eigenvalues of Theorem I. Some

additional insight into the value of T I required to make this result valid can be obtained by noting

from Eq.(120) and Fig. 14 that if T l > T + T h, where T h is the "duration" of h(t), to a good

approximation, and for --T/Z ..<t, s _< T/Z,

t Note that in a strict sense, Eq. (124) is true only in the limit T' -_ oo. However, it is clear that when T' is

sufficiently large, the error will be negligible.

Sin this and subsequent discussions it is convenient to order the [X.} in the manner of Eq. (126) rather than in the

conventional manner of )_1 _" k2 b .... It should be mentioned tl_at other, closely related, asymptotic results

have been obtained by Capon95 and Rosenblatt 96 for the case of arbitrary T and i -_ oo.
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Fig. 14. Concerning form of K(t,s) when

T 1 is large.

h ( a'-t ]

.h (o'-s]

I I
I I

t $ T T I

K(t, s) = K{t -- s)

where

K(t - s) : IH(f) I2 exp [jco(t - s)] df

Substitution of this result into Eq. (t22) leads directly to Eq. (125).

Consider next the {_0i(t) } and {Xi} of Theorem 2 and recall that

Xi_0i(t) = q0i('r) K(t- r) dT 0 ..< t -.< T (127)

where

K(t) A S _ [H(f) 12 eJC0t= -_ _ df

As before, it is convenient to shift the time origin so that the {q_i(t)} are defined over I--T/2, T/2]

and therefore satisfy the equation

T/2
Xi_°i(t) : -T/2 _i(s) K(t- s) ds Itl-.< T/Z (128)

Following the previous procedure, let _i(t) be written as

JWkt
P i (t) = 2 aik e It I -< T/2

and substitute this expression into Eq. (t28). This gives, after multiplication by exp [-jwft] and

integration over I-T/2, T/2],

t _T/2-jc0_t [sT/2 JWkS ]Xiai_ = -_ 2 aik J-T/2 e K(t-s) e ds dt
k [ -r/2

Since the bracketed term is simply the output of the filter K(t) when the input is exp [JCOkt],

--T/2 < t < T/2, and since the Fourier transform of this input is T sine(f-- fk ) T, it follows that
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_ I H(f) [2 fT/2
kiaii = _ aik _oo N(f) - sinc (f - fk ) T df 'J-T/2 exp [-j(a + _) t] dt

k

_ IH(f) I2= T _,_ aik N(f) sinc(f- fk ) T sine(f + f_) T df
oo

k

Assume now that T is large enough so that ]H(f) 12/N(f) is essentially constant about f = --fK

Then, with negligible error,

IH(f_) [2 if/
Xiai_ = _ aik N(f_) oo

k

T sinc (f - f_) T sinc (f + f_) T df

]H(fl) ]2

= ai_ N(f_)

Thus, by analogy with the discussion preceding Eq. (126), it follows that when T satisfies the

assumed condition, the {ei(t)} and {ki} of Theorem 2 are, with negligible error, given by

2_rit_2i_l(t) = sin T i = l, 2,3 ....

2 27rit
_2i(t) = _/T cos _-- It[ < T/2

i 2
IH(_-) [

1'2i = k2i-t = N(T)

(t29)

which is the desired asymptotic form. At this point, it is sufficient to state that arguments

similar to those used above show that for T and T i sufficiently large, the {(Pi(t)} and {ki} of

Theorem 3 are also given by Eq.(129). From this the important conclusion is reached that in

all cases the {_i(t)} become sinusoids when T _ _. Furthermore_ some idea of the value of T

required to make this approximation valid has been obtained. This result together with the re-

sulting simple form of the eigenvalues will prove useful in deriving a "good" suboptimum modu-

lation system. Before proceeding with such a derivation, however, it is important to obtain

some insight into the manner in which the (Pi(t) differ from sinusoids when T is finite; this

difference, although quite small, has been found to be important in an experimental system.

For this discussion, let T I be infinite, consider the {(Pi(t)} of Theorem I and recall from

Sec. II-D-4 that the {_i(t)} are self-reproducing [over the interval (0, T)] when passed through

the cascade of h(t) and h(-t), i.e., when passed through a filter whose impulse response is the

autocorrelation function Rh(t) of the channel filter. Next, observe as suggested in Fig. 15, that

when T is long relative to the duration of Rh(t) and a sinusoid of length T is passed through

Rh(t) , the output signal differs from a sinusoid only near the ends of the interval. Thus, since

the previous work has shown that for large T the {q_i(t)} are approximately sinusoids, and since

sinusoids are self-reproducing except near the ends of the interval, it follows that for large but

finite T the {(Pi(t)} differ from sinusoids only near the ends of the interval.
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Fig. 15. Concerning form of the {_i(t)} when T is large.

2. Modulation System

This section is concerned with the derivation of a third suboptimum modulation system

based on the results of the previous section and those in Appendix B.

Consider first the analysis of Appendix B and, for a given [H(f) I2/N(f), let T be chosen
m

so that IH(f) 12/N(f) is essentially constant over an interval of I/T mcps. Then, from the dis-

cussion preceding Eq.(B-5), it is clear that for T > T m the sums in the error exponents for

finite T will differ negligibly from the limiting integral forms. Next, recall from Sec. IV-C-I

that for T > T m the {_Pi(t)} are, to a good approximation, sinusoids. Thus, since T might typ-

ically be on the order of days, weeks, or months and since, at least for telephone channels,

T m is on the order of 0.01 to 0.I second, it seems reasonable to attempt to substitute for the

{_0i(t) ) time translates of a set of sinusoids approximately T m seconds long. In other words,

if a set of (c_i(t))are defined as

_zi_1(t)A=

c_zi(t)=

sin[ Z"__t ] Itl <
0 elsewhere

, Z_it2 cos l-_-J Itl < _/2

0 elsewhere

_T
m

(t3o)

the (q_i(t)) would be replaced by time translates (by k_ seconds, k an integer) of some number

of the {_i(t)}. However, when this is done two forms of intersymbol interference are encountered.

One form occurs because the {_i(t)} are only approximations to a set of (ei(t)) of length _ and

therefore are only "approximately" orthogonal at the channel output. The second form arises

from the nonorthogonality at the channel output of nonequal time translates of any two of the

(at(t)). Both forms of intersymbol interference can be reduced significantly in the following

manner.

Let white noise and an infinite observation interval be assumedt and recall from Sec. II-D-4

that the "coordinate filters" for this situation may be realized as the cascade of a filter with

"j"The assumption of white noise is made here only to simplify the subsequent discussion. The results obtained can

be applied to the colored noise problem by simply replacing the filter with impulse response h(-t) by a filter with

transfer function H*(f)/N(f). The assumption of an infinite observation interval is made because it is usually quite
easy to make the interval long enough to be infinite for all practical purposes and because implementation prob-
lems are simplified when this is done.
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impulse response h(--t) followed by a multiply and integrate operation. Also, observe that if 3-

in Eq. (130) is considerably greater than the duration of the impulse response of the cascade of

h(t) and h(--t) [if _ is considerably greater than the duration of the filter autocorrelation function

Rh(t) ] when ai(t) is transmitted the corresponding signal at the output of h(-t) will be essentially

an undistorted sinusoid except near the ends of the interval. Thus, if _'f is the approximate
g

duration of Rh(t) and if the {c_i(t)} _ are redefined as

c_zi(t) =

c _ c-

-- 12 it 1
sin Itl <

elsewhere

-- cos [__ZTrit ] It[ < ._/Z

[ 3- -_gl

elsewhere (t3t)

it follows that by observing the output of h(-t) only over the "inner interval" of [t [ _< (.'f - 'J-g)/2

the orthogonality of the {at(t)} at the channel output will be greatly improved. In addition, when

time translates of any two of the {at(t)} are transmitted, this same technique gives a significant

reduction in the intersymbol interference between successive signals. The following example

provides some quantitative insight into the effectiveness of this procedure. ]Note that if Rh(t)

were identically zero for I tl > _-g, all intersymbol interference would be completely eliminated.]

Consider a channel for which

h(t) : I -t

e t>_O

0 t<O

and let Ilk denote the magnitude of the number obtained when the output of h(-t), assuming c_i(t)

is transmitted, is multiplied by C_k(t) and integrated over the interval It] _< (3 -_g.)/2. (Observe

that for i _ k, lik provides a measure of the intersymbol interference caused by the nonorthogo-

nality of the {ai(t) ) at the channel output.} For this channel and for i 5A k, lik can be upper

bounded by

2 -
Iik..< (__ _g) e

Thus, the intersymbol interference decreases almost exponentially with increasing _g and is

inversely proportional to the duration _ of the {cgi(t) }. For this channel, reasonable values of

._ and _ might be 8 and 80 seconds, respectivelyff For these values,
g

-4
lik< 5.2 x I0

-I
and since lii = [I + c0i] < i, it follows that the intersymbol interference can be considered

negligible except for extremely high SNR conditions.

t The selection of values for _f and _g involves a trade-off between equipment complexity, ;ntersymbol inter-

ference reduction, and loss in effective signal power. This point is considered in more detail later for telephone

channels. The values assumed here are of the same order of magnitude (after an appropriate bandwidth scale

factor is introduced) as those selected for the telephone line modulation system.
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As the next step in the evaluation of this modulation system, it is of interest to investigate

the performance that might be expected when it is used with a telephone channel._ Yudkin 34 has

found that for several different circuits the autocorrelation function of the channel impulse re-

sponse is essentially confined to an interval of I msec, i.e., Rh(t) -_0 for I tl > 500_sec. Thus,

a value of _- = I msec should prove satisfactory for such a system. Given this value of _- , J-

should be chosen_ so that IH(f) I 2 is approximately constant over an interval of i/_ cps and_also

so that _- >> _ . However, from the standpoint of equipment complexity, _ should be as small
g

as possible. A reasonable compromise is _ = llmsec. With these parameters, the {_i(t)} are

sinusoids spaced at 100-cps intervals throughout the telephone line passband. To proceed fur-

ther, consider a telephone line having a nearly flat amplitude characteristic over a band of

2.5 kcps and assume a SNR of 30 db. $ For this line, approximately 50 of the {_i(t)} would be

used. If the situation is considered in which the modulation system is used without coding, it

would be practical to assign equal energy to each of the {_i(t)} and to let each signal carry n

binary digits of information. The number n would be made as large as possible without causing

an excessive error probability due to low level noise and intersymbol interference. Assuming

negligible intersymbol interference, the value of n can be determined in the following manner.

By assumption, the transmitted signal (for one interval of _- seconds) is of the form

x(tl= _ xiai(t) It[ < 9-/2
i

where the (xi} are statistically independent and can assume the equiprobable values

(132)

X.

i ±t ±3 .... ,±2 n-_- = , -- t (t33)

The constant k is chosen to satisfy the input power constraint. From Eqs. (131) and (132) k

must satisfy

S = E _-T/2 xg(t) dt = _- _, _ J-T/2 c_i(t) _j(t) dt

i,j

t x
= _ _ i J-T/2 a'z(t)l dt = _(5-- gg) _ x2 J-T/2 [l + (-I) i cosZ_it ] dt

i i

[ sin #l_-_ _ _ xiz I+(-i) i _iE j
i

I 2

_-- y E x i

g i

(t34)

"]"Since it is possible to effectively eliminate phase crawl at a negligible cost in signal power, its effects are not

considered in this discussion.

:_ In defining the SNR it is assumed that the actual input signal power is scaled to compensate for any flat loss on

the line. For example, if a particular line has a minimum loss of 10 db at some midband frequency, the actual

input power would be decreased by 10 db in determining the SNR. Also, the noise power is considered to be the

average power of the line output signal when the input signal is removed. (For analytical purposes, it is assumed

later that the channel noise is white and Gaussian wlth double-slded noise spectral density N and that the noise

power has been measured at the output of a 2.5-kcps ideal filter.) o
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where the last step follows from the fact that the low-frequency cutoff of the telephone line

~ ._f > 8.87r. From Eq.(t33) it follows thatrequires w i > 27T(400) and therefore co 1

2n-I

2 k22 -n+l _, (2f- l)2 all ix i =

f=l

or, from Series 25 of Ref. 99,

2 I k 2 22n
x i = _- [ - i] all i

Assuming that 50 of the {at(t) } are used, it follows from this and Eq.(134) that k must satisfy

S = k 2 5 × i03 [22n_ I
3

(135)

Next, it is necessary to determine the signal and noise components at the receiver output

when the transmitted signal is given by Eq. (132). Since the k th "coordinate filter" for this

system is realized as the cascade of the filter h(-t) followed by multiplication by a, (t) and in-K

tegration over the interval I tl _ (_f - ._f )/2, it follows that the signal portion of the k th filter
g

output, say s k, is

t<[f /2v2 ]s k = ak(t) X{T) Rh{t- r) d7 dt

J-(_I - _fg}/2

Upon substituting Eq. (t32) and recalling that zero intersymbol interference is assumed, it

follows that

Sk = [H(fk) I 2 Xk

where fk _ [k + l/2(_- - _%)], if k is odd and fk _ k/g(_ - _)g) if k is even.

Similarly, the noise portion of the k th filter output, say nk, is

L(':I" -'3'igi//22 ak{t) [ £ l
n k = _ n(7) h(r --t) dr dt

( -

and since n(t) n(T) = N 6(t--r}, it follows that
O

(136)

,_((_ii _- 3g)/2 _([f- 3- )/2nknj = No " C_k{t) 3('( 'f aj{r) Rh{t-r) dTdt
:Jg)/2 -.-. /z

No i H{fk} 12 6k j
(137)

where the las_ step follows from the assumption of zero intersymbol interference. Thus, if

Ilt(fk) J2 -_ t is assumed, it follows from Eq.{133), Eqs.(t35) to {t37), and the assumption of

Gaussian noise that the probability of error is given by
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where

P = 1
e 1 S _ 1 t 2

-g exp[--_- (7) ]dt

t _/(_ I 2
_]-_,3_p./¢ exp [-- Z t ]dt

_ [3× t0-3S11/2

S 3 × I0 -3 22n ]- N O 5 ( - 1)-I t/2 (138)

Finatly, since a SNR of 30db is assumed and since the SNR definition is

S
SNR = _ x 10 -3

O

it follows that

S x 10 -3 = 103
5N

O

or

S 6
-- =5x10
N

O

Thus, from Eq.(138),

g-- - [3 X 103(22n- 1)-1] t/2
ff

and it follows from a table of the Gaussian distribution that if P
e

be such that

[3 x I03(22n- 1)-t] 1/2 >4.42

< t0 -5 is required, n must

OF

1
n < _- lo_,2o t55

Thus, n4 3 and the conclusion is reached that it should be possible to transmit three binary

digits of information on each of the {at(t)} without exceeding a Pe of 10 -5. Since the {at(t)}

are llmsec long and fifty of them are used, this implies a data rate of

R = 3 x 50 x (0.011) -I = t3,600 bits/second (139)

When this result is compared with the rates of 2500 to 5000 bits/second attainable with commer-

cial equipment (see See. I-C), it is clear that the present modulation system offers a significant

potential improvement in performance. Furthermore, use of a "powerful" coder-decoder such

as the SECO machine 50 would lead to a I0 to 20 percent rate increase while giving virtually

error-free transmission.
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As a practical matter, however, it must be emphasized that this result is based on several

assumed conditions that may be only approximately realized in practice Most important of

these is the assumption of negligible intersymbol interference. (Recall from Sec. I-D that inter-

symbol interference is the primary factor limiting the rate of present modems.) Since Rh(t) is

not identically zero for Itl > 500_sec, it is clear that some intersymbol interference must be

present in an actual system; however, the form of Rh(t) found by Yudkin 34 indicates that a sig-

nificant reduction will be obtained. In view of the potential rate improvement with this modula-

tion system and because of the impracticality of analytically determining the actual intersymbol

interference level as well as the effects of other departures from assumed conditions, an experi-

mental program was undertaken to demonstrate that the theoretical rate improvement could be

realized in practice. The results of this program are presented in the following section.

As a final evaluation of the telephone line modulation system, it is of interest to compare the

value of C for this modulation system, say C_, to the value obtained with the optimum modula-

tion system for a channel whose amplitude characteristics are similar to those of a telephone

line. Figure 16 presents the amplitude characteristic of a simulated channel used in the exper-

imental work. Assuming white noise, the value of C for this channel is presented in Fig. 17 and

has been obtained by graphical integration of Eq. (38). Assuming negligible intersymbol inter-

ference, it is readily found from the previous discussion and Eq.(35) that,

H( i _)_ bits/second (140)

where B (0) is chosen to satisfy

and

B_(O)

I H )2 l= > B(O)I i: (y_ J_g

Equation (140) is plotted in Fig. 17 for the channel of Fig. t6 using the values _f = llmsec and

Yg i msec. Observe that the effective loss in signal power is only 3db at S/2 = 3 x 106 which

corresponds to a SNR of approximately 30 db.
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CHAPTER V

EXPERIMENTAL PROGRAM

The experimental program described in this section was undertaken to demonstrate that the

performance predicted for the telephone line modulation (TELMOD) system in Sec. IV-C-2 could

be realized in practice. As described previously, the transmitter portion of the TELMOD sys-

tem consists of approximately fiftydifferent ll-msec duration sine and cosine signals spaced

at 100-cps intervals throughout the telephone line passband. The receiver portion consists of

filtering by h(--t)followed by multiplication by the desired sine or cosine function and integration

over the inner interval of 10 msec. In other words, with {_i(t)} and x(t) defined as in Eqs. (131)

and (13Z), respectively, this system has the form indicated in Fig. 18 for the interval ]tI < 7/2.

Recall that the fundamental assumption of the previous analysis was that intersymbol interference

for all signals was negligible relative to the assumed noise level of 30-db SNR. Thus, the pri-

mary goal of the experimental program was to demonstrate that this intersymbol interference

level could be achieved in practice; a secondary goal, of course, was to demonstrate that other

differences between the model and the real channel have a negligible effect on the predicted

performance.

When considering the intersymbol interference level to be expected with the TELMOD system,

two points should be noted. First, observe that if _i(t) and _j(t) differ in frequency by several

hundred cycles per second, their spectra have virtually zero overlap. Thus, it would be ex-

pected that the orthogonality of these signals would be quite good at the channel output, i.e., the

intersymbol interference at the output of a particular co-ordinate filter should be caused pri-

marily by a few immediately adjacent tones. Second, recall from Sec. IV-C-I that an eigen-

function is closely approximated by a sinusoid only if IH(f)l2 is essentially constant over an

interval several times i/_ cps wide centered about the frequency of the sinusoid. Thus, it is

to be expected that the orthogonality of immediately adjacent tones will be good (the intersymbol

interference will be small) for tones in midband where ]H(f)[Z is nearly constant while the

orthogonality will be poor near the band edges.

Based upon these considerations, an experiment was undertaken, which involved construction

of transmitting and receiving equipment using ten of the {(_i(t)}discussed above with _- = iI msec

and 3-g= I msec. The amplitude of each ozi(t)is determined by a five-digit binary number; this

number is obtained from either manual switches or a random source. The frequencies of the

{_i(t)} were variable and covered with ranges of 0.5 to 0.9kcps, 1.5 to l.gkcps and Z.5 to Z.9kcps

with both sine and cosine signals being used at each frequency. The block diagram for this sys-

tem is shown in Fig. 19.

Using this equipment, the following experiments were performed.

A. SIMULATED CHANNEL TESTS

On a simulated channel with white Gaussian noise and the filter amplitude characteristic

presented in Fig. (16), the zero rate error exponent was evaluated by measuring the probability

of error for two orthogonal signals. The measured performance was 0.8 to 1.0db from theo-

retical which is well within the loss attributable to measurement inaccuracies and slight equip-

ment imperfections. The intersymbol interference level for various tones was investigated by

measuring the error rate due to intersymbol interference in the absence of noise. Using the
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approximation that the intersymbol interference was Gaussianly distributed* it was possible to

calculate an effective intersymbol interference variance for various tones in the frequency bands

of 0.5 to 0.9, 1.5 to 1.9 and 2.5 to 2.9kcps. The results of these measurements can be sum-

marized as follows.$

(1) In the region of 0.6 to 2.0kcps, where IH(f) J2 is flat, the intersymbol

interference variance between a particular reference tone and adjacent
tones decreased approximately as i/n, where n is the frequency dif-

ference between the tones in units of 100cps. For n > 6, the intersymbol
interference variance caused by a single tone was too small to be
measured.

(2) In the frequency range of 0.9 to 1.9 kcps, the total intersymbol inter-
ference variance§ was less than 6.25 x 10 -2. For 16-1evel output

quantization, this implies that Pe < 3 x i0 -5. Thus, to within the ac-

curacy of the Gaussian approximation to the intersymbol interference
distribution, it would be possible to transmit four binary digits of in-
formation on each of the tones.

(3) For frequencies in the range of 0.5 to 0.9kcps, the total intersymbol
interference variance increased from a level of less than 6.25 x 10 -2

at 0.gkcps, to 0.2 to 0.7kcps, to 1.0 at 0.5kcps. The corresponding
information rates at a Pe <_ 3 × 10 -5 would be 4, 3, and 2 binary digits
per tone for the frequencies of 0.9, 0.7, and 0.5kcps, respectively.

(4) In the 1.9- to 3.0-kcps frequency range, the intersymbol interference
variance increased from 6.25 x I0 -2 at 1.9kcps to 0.16 at 2.5 kcps,

to 0.5 at 2.7kcps, to 1.25 at 2.9kcps. The corresponding information
rate at a Pe < 3 × i0 -5 would be 3, 2, and I binary digits per tone for
the frequencies of 2.5, 2.7, and 2.9kcps, respectively.

The significance of the measurements on the simulated channel can be summarized as follows.

(i) As predicted theoretically, the intersymbol interference level is small
for signals in the frequency range where IH(f) 12 is constant (in the 0.9-

to 1.9-kcps range) while it is significantly large near either band edge,
where IH(f) l2 changes considerably over an interval of a few hundred

cycles per second.

t The justification for this assumption is the fact that the intersymbol interference for a given tone is a sum of the

(small) random interferences from a number of adjacent tones. Thus, to a first approximation it would be expected
from the Central Limit Theorem that the total interference would be Gaussianly distributed. Clearly, the fact
that only 10 to 12 tones contribute significantly to the intersymbol interference for a given tone implies that this

is a highly approximate assumption. However, it is a convenient engineering approximation which led to con-
sistent results.

All the results presented in this section are based on an extrapolation of measurements made in the indicated

frequency bands. For example, the intersymbol interference variance for a tone at 0.9 kcps was obtained by

measuring the intersymbol interference variance due to the signals in the 0.5- to 0.8-kcps band and adding this
to the variance obtained for the 0.9-kcps tone when all signals were transmitted with random amplitude.

§ The intersymbol interference variances given in this section are expressed in normalized form, the reference

being taken as the amount by which an integrator output changes when the amplitude of the corresponding input
signal is changed by one level. Thus, for a given intersymbol interference variance a 2, the probability of error,
assuming 32-level quantizatlon of the integrator output, is

r i/2 i
Pe = 1 - (27ra2) -1/2 J-1/2 exp [-5 (x'/a)2] dx

Similarly, if 16-level quantlzation is assumed

1
Pe = 1 - (2_a2) -1/2 Zll exp [-_- (x/a) 2] dx
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(2) On the basis of midband measurements, the intersymbol interference
level for the TELMOD system on this channel is equivalent to a noise
level of approximately 31-db SNR._ Thus, for a noise SNR less than

about 30 db, the intersymbol interference level could be considered
negligible, and furthermore, the performance would be within l db of

theory. Conversely, for a noise SNR significantly greater than 30-db
intersymbol interference would be the primary factor in determining
probability of error.

(3) If a noise SNR considerably greater than 30 db is assumed and if a

Pe <_3 x 10 -5 is desired, it would be possible to achieve a data rate
of approximately 14,000bits/second over this channel. This number
is based upon the measurements given above and assumes the following
relation between the tones and the quantization levels.

Frequency Binary
(kcps) Digits/Tone

0.5 , O.6 2
0.7 , 0.8 3
0.9 to 1.9 4
2.0 to 2.4 3

2.5 to 2.7 2
g.8 to 3.0 i

Furthermore, if the noise SNR were sufficiently good, it would be
possible to do amplitude equalization prior to the h(-t) filter and thus
to extend the flatportion of the channel to 3.0 kcps.$ Such equalization

would lead to a rate of 15,000bits/second and would greatly simplify
instrumentation problems.

B. DIAL-UP CIRCUIT TESTS

Intersymbol interference measurements were made on a local dial-up line whose amplitude

characteristics are given in Fig. Z0. For this channel, it was found that the severe amplitude

ripple gave an unusually long autocorrelation function Rh(t) of approximately 10-msec duration.

Because of this, the observed intersymbol interference levels were large and the assumption

of a Gaussian distribution for the intersymbol interference could not be made. Thus, the only

measurements possible for this channel were probability of error vs number of amplitude levels.

The results of these measurements indicate that only two levels per tone (or equivalently about

1800bits/second) can be transmitted at an acceptable error rate using the TELMOD system

presented in Fig. 18. However, itwas found that the low-level noise SNR for this line was better

than 50db.§ Thus, amplitude equalization of the channel before filtering by h(--t)could be done

t From Eq.(138)and the subsequent discussion, it follows that if n is the number of binary digits that can be

transmitted at a Pe _ 3 X 10-5 due to intersymbol interference, the effective intersymbol interference SNR is
given by

SNR × _ 4.0
22n - 1]

$ As a practical matter, it has been found during the experimental work that the SNR for many leased data circuits

is on the order of 50 db rather than the frequently quoted 30 db. Thus, such a procedure of amplitude equaliza-
tion, although not optimum from the standpoint of detection theory, would lead to significantly reduced inter-

symbol interference and thus to an increased rate.

§ It must be emphasized that this SNR was observed only in the absence of impulse noise. For this line, the
impulse noise was both large and frequently occurring; the observed probability of error due only to impulse noise
was on the order of 10-3.
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to give a flat response over the band of approximately 0.6 to 1.6kcps. On the basis of the tests

on the simulated channel, this would give a capability of transmitting at least eight levels on

each tone and thus of realizing a data rate of approximately 6000 bits/second.

C. SCHEDULE 4 DATA CIRCUIT TESTS

The third series of tests were made on a Schedule 4 Data Circuit looped from Lincoln Labora-

tory via Springfield, Massachusetts, whose amplitude characteristics are given in Fig. 21. As

with the simulated channel, the intersymbol interference level for various tones was investigated

by measuring probability of error due to intersymbol interference and then calculating an ef-

fective intersymbol interference variance assuming a Gaussian distribution.t The results of

these measurements can be summarized as follows.

(1) As before, the intersymbol interference between a reference tone
and adjacent tones was found to decrease approximately as I/n where

the frequency difference between tones is n x 100cps. For n > 6, the
intersy,mbol interference due to a single tone was too small to be
measured.

(Z) In the frequency range of 0.5 to 0.9kcps, the intersymbol interference
variance was 0.74 at 0.5kcps and 1.56 at 0.7 and 0.9kcps.$ The cor-

responding data rate at a Pe <_3 x I0 -5 is Z binary digits per tone at
0.5kcps and I binary digit per tone at 0.7 and 0.9 kcps.

(3) For the frequency range 1.5 to 1.9kcps, the measured variances were
0.12 at 1.5kcps, 0.15 at 1.7kcps and 0.21 at 1.9kcps. The correspond-

ing data rate would be 3 binary digits per tone.

t For this line_ the low-level noise SNR was 50 db and impulse noise activity was extremely small; the measured
probability of error due only to impulse noise was on the order of 10 -6 . Thus, the effects of both low-level noise

and impulse noise were neglected in the intersymbol interference measurements

$ Observe here that the intersymbol interference increases for tones further away from the band edge. 1he cause
of this is the rapid change in IH(f) l2 around 1.0 kcps.

99



0.8 1

0.4

0 0.8 1.6 2.4 3.2

f (kcps)

Fig. 21. Amplitude characteristic of Schedule 4 Data Circuit.

(4) In the 2.5- to 2.9-kcps frequency range, the variances increased from

1.32 at 2.5kcps to 2.1 at 2.7kcps, to 3.3 at 2.9kcps. The corresponding

data rate at a Pe _ 3 × 10 -5 is i binary digit per tone.

The significance of these measurements can be summarized as follows.

(I) As predicted theoretically, the fact that this channel is not flat causes

the intersymbol interference level for the TELMOD system to be sig-

nificantly higher than it was on the simulated channel. However, the

high observed SNR for low-level noise would allow amplitude equali-

zation of the channel prior to filtering by h(-t) and thus would allow

a significant reduction in the intersymbol interference level.

(2) If a Pe < 3 × 10 -5 is desired, it would be possible without amplitude

equaliz_ion of the line to achieve a data rate of approximately 8400 bits/

second. This is based upon the measurements given above and assumes

the following relation between the tones and the quantization levels.

Frequency Binary

(kcps) Digits/Tone

0.5 to 1.0 I

I.I to 1.3 2

1.4 to 1.9 3

2.0 to 2.4 Z

2.5 to 3.0 l

If, however, amplitude equalization of the line was performed, the tests

on the simulated channel indicate that a rate of approximately 15,000

bits/second would be possible.
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APPENDIXA

PROOFTHATTHE KERNELSOFTHEOREMS1 TO 3 ARE _2

A kernelK(t,s) is saidto bean_2-kernelif65

T T
"K'I2 _ _o _o K2(t's) dtds< _

For thekernelof Theoreml, it followsthat

IIKII2 = _oT _'_oT t h(0---t) h(o---s) do- dtds

and thus from the Schwarz inequality

_:s_[_o_ l[s:_ lIlK}f2..< h2(o - --t) d(r hZ(cr - s) act dtds

O

=[_o__;_h_,_-t,_l_
_< h2(o ") d_ dt

Is__ I= T h2(t) dt < _

which proves that the kernel is _2 Next, to prove that the kernel of Theorem 2 is _2

function Kt/2(t ) by

[N(f)]-i/2ZX f" IH(f) I e jwt dfKl/z(t)

Then

and, therefore

co

K(t--s) : __ Kl/z(t--e) Kl/2(s-e) dcr

= Kl/2(t -

which, from the Schwarz inequality, becomes

2_) KI/2(s --(r) dcr dtds

•[s: ]Is: ]
[sos: l_= dt K 2/2(_) dcr

c_

define a

i01



Thus,from Parseval'stheorem,

IIKII2..< T IH(f) I2 [N(f)] -I df <oo

oo

and the kernel is _2. Finally, to prove that the kernel of Theorem 3 is

kl/2(t, s) by

_, (ht, Ti)Tt

kl/g(t, S) _ 2 Ti(S)

i=i _i

define a function
2

where

(ht'Ti)Tl _ _TI 7i(a) h(_--t) da

and 7i(t) and _i are defined as in the proof of Theorem 3, Then

(h t,
Ti)T I

(h s,
Yj)T I

oTI kl/z(t ,or) kl/z(s , _) dcr = ?
i, j _ (Ti' Tj)T

(h t,Ti)Tl (h s,Ti)Tl

[ _ Ti(cr) Ti(0) ]

= K(t, s)

h(p -- s) dcr do

Thus,

12l,K,,2=ff'ktJ2 t, 'ktJ2 s  'd dtds
which becomes, from the Schwarz inequality,

dt ds

2 2

: T 2 _i dt

i=l

llowever, it is known 98 that

2

(h t, Ti)TI ___ Itt(f) lZ
Z _i "< _ N(f)

i=t

-- df

t02



Thus,

IlKll2_< T
oo

and the kernel is _2"

[ H(f) I2] 2N(f)
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APPENDIX B

DERIVATION OF ASYMPTOTIC FORM OF ERROR EXPONENTS

This Appendix is concerned with a derivation of the limiting form of the error exponents of

Eqs. (34) to (36) and Eq. (58) for T _ _. Consider first the standard random coding exponent

given by

S
ET(P ) = (_+ p)2 2- BT(p ) R(1) ,.< R _< R(0)

N
i k. ET(P)

o 4 p _< i (B-i)
R(p) = _ _ in BT(P ) P

i= i

and

N
k.

i i
ET(R) = _ _ in

BT(1)
i: I

R o 4 R,.< R(1)

where

i

BT(P)

N
ST + _. _,.-i

t +p i=i

N

and N is chosen to satisfy kN > BT(P) >i XN+ I. Recall from Sec. IV-C-I that for large T the

{Xi} are given by

IH(---_)IZ
= - i = i, z, 3 .... (B-Z)

kZi XZi- i N(T)

and assume temporarily that IH(f) IZ/N(f) is a continuous monotone nonincreasing function for

f >I0. Also, recall from Fig. 5(a), or observe from Eq.(B-I), that BT(P) is chosen to satisfy

S I

"2(I + p) T
i=l

where now N/2 is the largest integer such that

(B-3)

Observe, as suggested in Fig. B-l, that the quantity

N/2 N( T )I

i=i IH(T )12

is an approximation to the area under the curve N(f)/]H(f)l 2, while the quantity

(B-4)
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Fig. B-1. Concerning interpretation BT(P}

of Eq. (B-3).

N(t)

IH(f)l _

1 2 3 4 N-I

T T T T "'" 2T 2T

JT i=' IH(T/la

N t

ZT " BT(P)

is precisely the area under the line [BT(P)] -I. Viewed in this manner, it is clear that for arbi-

trarily large T, BT(p) will always be adjusted to make the difference in these two areas equal

to S/2(I + p). Thus, since N(f)/IH{f)l 2 is continuous and therefore Rieman integrable over a

finite interval, 69 and since it is readily shown 97 from the definition of a Rieman integral that

when N = 2TW(W > O)

N/z N{ i
t Y ) C V NCf) df

lim T _' ' Z = Jo 2i=t IH(T)I [H(f)[

it follows that in the limit T _ _o, BT(P ) or, more simply, B(p) must be chosen to satisfy

2(i +p) - B(p) iH(f) 121
(B-5)

where W is defined by

IH(W) Iz
N(W) - B(p) (B-6)

From this discussion and Eq. (B-i) it follows that

T_+ o )z sE(p) _ lim ET(p) = ( _- B(p) 0..< p..< t (B-7)
T_,.m

where B(p) is given by Eq. (B-6). Similarly, from Eqs. (B-I), (B-Z), and (B-5) if follows that

IH(i/T) Iz N
lim R(p) = lim 2 In N(i/T) Z-T lnBT(P) --

T-_=° T_°° i=i

5I/2 12 . ]

I H(i/T) N In B(P) E(P) 0 ..< P -.< t
= lim 2 in N(i/T)--- 2-_ p

T_o
i=l

From Fig. B-I it is clear that for T _ _, N/2T _ W where W is defined by Eq. (B-6).

more, since in (.) is a continuous function of its argument, it follows from above that

(B-8)

Further-
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N/Z
I IH(i/T) 12 CW [2

lira _ _ in N(i/T) = _o In IH(f)T_ _ N(f)
i= i

m df

Thus, from Eq.(B-8),

V iH(f) i2 E(p)lim R(p)= in _ df-W inB(p)
T_oo P

V ]H(f) 12 E(p)= In N(f) B(p) df P 04 P -.< i (B-9)

Equations (B-7) and (B-9) are the desired asymptotic forms when ]H(f)]2/N(f) is monotonic.

When ]H(f) ] 2/N(f) is nonmonotonic an analogous derivation shows that for T _ _o, B(p) is chosen

so that

S _ _ [ t N(f) ] d f (B-t0)
2(t + P) B(p) iH(f)]2

where

W = [+f: ]H(f) 12 ]N(f_ > B(p)

The corresponding values of E(p) and R(O ) are given by

E(p) = (._+ p)2 2S B(O) 0``<`<04 t

and

ffW " IH(f) I2 E(p)R(p) : In_]_-) df P 0..< 04 i

which is the result presented in Eqs. (37) and (38).

When 0 ,.<R.,< R(1), it follows from Eq. (B-l) and the previous discussion that

N/2

t ]H(i/T) I 2

lim ET(R ) = lim _ _, in N(i/T)BT(I )T_o T_o
i= l

-R

_W I H(f) I 2= in N(f) B(t) df-R

where B(t) and W are defined by Eq.(B-10). This is the result presented in Eq.(39).

Finally, the similarity of the expurgated bound given in Eq. (58) to the standard bound given

in Eq. (t3-t) together with the above results leads directly to the asymptotic form of the ex-

purgated bound presented in Eq. (59).

106



APPENDIX C

DERIVATION OF EQUATION (63)

This Appendix proves that the function T(t) which maximizes the functional

s/ [ III = _o --kx2(a) + x(a) x(p) Rh(a - p) + _ 2flkRh(a - p - kJ') dp da
k= i

is a solution of the integral equation

_7(t) = _ 7(T) K(t - _-) dT
Jo

where

K(t--T) _Rh(t--r) +

0_< t.< _

N

k=l

flk [Rh(t - s + k_) + Rh(t - s - k_')]

• , . 64 85
Following standard variational _ecnmques, ' let x(t) = 7(t) + _ f(t), where 7(t) is the desired

solution, and set

dI _=0d-T =0

From Eq.(C-I), this gives

e=O = -2XT(a) f(a) + [7(a) f(p) + f(a) 7(P)]

(C-I)

(c-z)

N

k=i

However, since Rh(a - p) = Rh( p - a), it follows that

_o f(a) T(O) Rh(a- O) dadp

_ N _ _ N

k= i k= i

and

X flkRh(a - p + k_') dadp

f(a) da (C-4)

Thus, Eq. (C-3) can be written as

d--}-e=0 = 2 --},7(a)+
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where K(a - p) is defined in Eq. (C-2). Finally, setting

dl E=0 =0

for all f(t)leads to the result that the bracketed quantity in the integrand of Eq. (C-4) must be

zero for all 0..<a _< _, i.e., T(t) must be a solution of Eq. (C-2).
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APPENDIX D

DERIVATION OF EQUATION (70)

This Appendix proves that if Qa(p) is a polynomial differential operator of order n, if v(t)

has a continuous (n -- i) st derivative and satisfies the boundary conditions of Eq. (68), and if K(t)

is n times differentiable, then

[Qe(p) v(e)] K(t - e) da = v(e) [Qa(-p) K(t - e)] de (D-t)
_)O °O

The definition of Qe(p) implies that

n

Qe(p ) v(e) = _ biv(i)(e) 0..<a..<

i=O

where

and

Thus

v(i)(e) _ d:v
dcr:

n

Q(s) A _ b.s i
_--- 1

i=0

n

_o [Qe(P)v(e)] K(t-e)de= 2 bi So v(i)(e)K(t-e)de
i=0

For i > 0, integration by parts and substitution of the boundary conditions of Eq. (68) shows that

v(i)(e) K(t--e) de = K(t-e) v(i-t)(e) e=0 - v(i-t)(e) _ K(t-e) de

= - v(i-t)(a) _ K(t- e) de

Repeated application of this result leads to

v(i)(e) K(t - e) de = (-I) i v(e) ----= K(t - e) de

de 1

Thus,

n

2bi °
i=O

v(i)(e) K(t -e) de = So ,]v(cr) t) 1 ---= K(t -- e de

i=0 bi(- de:

v(_) [Qe(-p) K(t - eI de

and Eq.(D-t) is proved.
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APPENDIXE
PROOFOF EVEN-ODDPROPERTYOF NONDEGENERATEEIGENFUNCTIONS

It is desiredto provethatall nondegenerateeigenfunctionsoftheeigenvaluedifferential
equation

[N(p2)--XiD(P2)] vi(t) =0 --_2<t < _2 (E-t)

vi(+_ ) =0

v.(n-t)(+_fE) : 0 (E-Z)

are either even or odd functions. Observe first that since N(p g) and D(p 2) contain only even

order derivatives and since

d 2k d 2k

dt 2k vi(t) = d_ vi(-t) k = 0, t .... (E-3)

it follows that if vi(t) is an eigenfunction with eigenvalue X i, then vi(--t) is also an eigenfunction

with eigenvalue X.I. Thus, if vi(t ) is a nondegenerate eigenfunction, there must exist a constant

b such that

vi(t ) + bvi(-t ) = 0 (E-4)

However, if Vie(t) and Vio(t ) denote the even and odd parts of vi(t), respectively, that is,

vi(t) + vi(-t)

Vie(t) - 2

and

vi(t ) - vi(-t )

Vio (t) - 2

it follows from Eq. (E-4) that (t -b) Vie(t) = -(t + b) Vio(t) and therefore that either b = t and

Vio(t ) = 0 or b = -t and Vie(t) = 0.

or odd.

In other words, a nondegenerate eigenfunction is either even
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APPENDIXF
OPTIMUMTIME-LIMITEDSIGNALSFORCOLOREDNOISE

ThisAppendixpresentsa generalizationof theresultsof Sec.IV-A to channelswithcolored
noise. Sinceaderivationoftheresultsfor colorednoisefollowsthepreviousworkquiteclosely,
onlythefinal resultsarepresentedhere.

Theproblemconsideredis thatof choosingafixedenergy,time-limited (to[0,_]) signalto
giveattheoptimumdetector54outputbothzerointersymbolinterferenceat t =k_, k =+ i,

+ 2 ..... and a maximum SNR at t = 0. Under the restrictions that h(t) is a lumped parameter

system and N(f) is a rational spectrum, the following result is obtained. As before, let

let

H(s) H(-s) A N(s 2)

= D(s z)

N(f) A N(s2)

: _(s2)
s2: _41rZf2

and assume that the orders of the polynomials N(s2), D(s2), N(s2), and D(s 2) are 2m, 2n, 2_,

2h, respectively. Then the maximization problem previously outlined leads to the boundary

value differential equation given by

[N(p 2) D(p 2) - XiD(P 2) N(p2)l vi(t) = 0 0 < t < 5_

vi(O) = vi(_ ) = 0

v.(n+_-t)(0) = v.(n+_-t)(F) = 0 (F-t)
1 1

The corresponding channel input signals {Ti(t) } are

7i(t) _ i Q(p) vi(t)

where

n+m

Q(s) Z_ H (s-z i)

i=I

z. = +s. i= 1,2 ..... n + m
1 i

RHP zeros of D(s 2) for i = I..... nsi = ,
[RHP zeros of N(s 2) for i = n +I ..... m + n

(F-Z)
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and therefore

Q(s) Q(-s) = cD(s 2) N(s 2)

These solutions have the following properties:

(l) The choice z i = s i or z i = --s i in the definition of Q(s) is arbitrary.

Thus, there are 2 n+m equally valid solutions to the maximization

problem.

(2) The {Ti(t)} are orthogonal and may be assumed normalized, i.e.,

in the notation of Sec. IV-A,

(Ti,7j)_ = 6ij

This normalization is assumed hereafter.

(3) If Kl(t) is defined as

oo

oo

and if the generalized inner product is defined as

oo oo

(f, d_dt
oo oo

then the {Ti(t)} are "doubly orthogonal" (in the sense of Sec. IV-A) at

the channel output with respect to the generalized inner product, i.e.,

if rij(t) is the channel filter output when 7i(t -j_) is transmitted, then

IX. if i = k and j =(rij ' Kirk f)_ = 1

0 otherwise

(4) The eigenvalues {ki} are the "generalized energy transfer ratios" of

the filter for the corresponding eigenfunctions, i.e., with rii{t } as

previously defined,

(rio, Ktrio)_

i (7i, _i)_

The importance of this result lies in the fact that the SNR at the

optimum detector output at t = 0 is given by

__ H(f) 12IX(f)(f) df
oo

when x(t) is the transmitted signal. Thus, Tl(t) is the solution to

the original maximization problem.
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